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containing cells are genetic instability and maintenance of high levels of
gene expression.

The sa point for this project has been a class of models
developed prevously by our group for Escherichia coli. The base model is
that for an individual cell. All cellular ccanponents are distributed into
20 model einponents (e.g. chrcmosonal DNA, stable RNA, m-RNA, etc.).
Popula in models are constructed from an ensemble of single-cell models.
Popu1Ation models account for distribution of cellular capabilities among a
pWGlation. The base single-cell model responds explicitly to changes in

.gucose or anmnium ion concentrations in the medium and mimics growth
under either full erobjic or anaerobic conditions.

During the firs tec, we have successfully introduced
-'a model fo tbe ol of replication of plasmids with the ColE1 origin of

-replicatio Model predictions of copy number con-pare well to reported
experimental results If we force the model to make a given amount of
plasnid encoded preteen, we can then predict genetic instability for a
culture producing the \same level of plasmid-encoded protein. The model
prediction and experimental results show that stability (in terms of number
of generations before a revertant reaches 90% of the total population) is
greater in faster growing than slow growing cultures. Further we have
extended the model to the low growth rate regime (< 0.15 hr-'). This
extension has allowed us to make predictions of the effect of growth rate
on plasmid copy number. The slow growth region is of interest since
imobilized cell reactors may be useful ccmmercially and sane other
applications, such as in situ treatment of wastes may place cells under
conditions of restricted growth. Extension of the model to include amino
acids as substrates and an explicit model of the lac promoter is now
partially conplete.
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Discussion of Results for Year I

The purpose of the project is to develop a mathematical model for
Escherichiacoli carrying plasmids in which a high level of plasmid encoded
protein synthesis can be induced. The model can then be used to guide
strain construction and the development of bioreactors and appropriate
operating strategies.

Our proposal to ONR was based on previous work we had done developing
models for Escherichiacoli. Early attempts to write models of populations
with both chemical structure and segregation (i.e. recognition that a popu-
lation contains a destruction of properties) failed. These attempts failed
because the models were written from a population perspective and the
resulting equations were intractable. We circumvented these problems by
writing a detailed model of an individual cell which contained significant
chemical structure and then constructed a population model using a finite
representation technique. This approach results in a mathematically
tractable model that predicts the dynamic (i.e. transient) response of a
population to perturbations in environmental variables such as substrate
concentration (glucose or ammonium ion) or flow rate in a chemostat.
Review articles describing this modeling approach have appeared during this
last year (Shuler, 1985. Chem. Eng. Commun. 36:161; and Shuler, 1985. In
Comprehensive Biotechnology Vol. 1, p. 119) and reprints are included in
this report. Although these articles appeared during the period of ONR
support, they were written prior to the initiation of the ONR grant.

We have successfully introduced a model for the replication of ColEl
type plasmids into the base single-cell model of E.coli. The results are
described in the manuscript entitled "Mathematical Model for the Control of
ColEl Type Plasmid Replication" which is currently in press for publication
in Plasmid (copy attached).

RNAII is a transcript that combines with the plasmid origin of
replication to form a preprimer for replication. If RNA[ binds with RNAII
before it reaches the origin, no replication can occur. ROM is a plasmid-
encoded protein that enhances RNAI binding. Using binding-constants for
RNAI-RNAII measured by Tomizawa and colleagues for various mutations in the
absence and presence of the ROM protein, we are able to predict copy
numbers similar to that measured by Tomizawa and colleagues. The model
even predicts correctly those cases where copy number exceeds 100 which
former models have been unable to do. Using the model we were able to test
three hypotheses about the mechanism of interaction of RNAI and the Rom
protein. The model favorably supports the mechanism proposed by Tomizawa
and colleagues concerning the nature of RNAI-RNAII interactions and that
the ROM protein increases the binding rate between the t .o RNA species.
The hypothesis that the interactions of RNAI-RNAII increases the
susceptibility of RNAII to the action of endonucleases is not a plausible
mechanism.

The production of high levels of plasmid-encoded proteins leads to a
"metabolic burden" on host cells. Revertants that lose the plasmid through
missegregation of the plasmid have a distinct growth advantage over
plasmid-containing cells. Consequently nonproductive revertant cells can

A



r

displace plasmid-containing cells or what is often called "genetic
instability". By using our model with a host cell containing plasmid we
can make reasonable predictions of genetic instability. These results are
discussed in the enclosed manuscript, "A Mathematical Model for Predicting
Copy Number and Genetic Stability in Escherichiacoli" which has been accepted
for publication in Biotechnology and Bioengineering. The model over-
predicts the degree of stability of the culture slightly. The model only
recognizes segregational plasmid instability. Since structural instability
or the formation of multimers is possible in the culture used for experi-
mental verification, a slight overprediction of stability is under-
standable. Both model and experiment show that the system is more stable
at i = 0.7 hr- than at p = 0.3 hr- .

For many practical systems it may be desirable to operate for a period
of time under fairly severe nutrient limitations. Cyclic reactors,
immobilized cell systems, or insitu treatment of hazardous wastes are
examples. It may also be of importance to understand what steps become
growth rate controlling under a variety of environmental circumstances. In
a manuscript entitled, "Growth Behavior and Prediction of Copy Number and
Retention of ColEl Type Plasmids in E coli Under Slow Growth Conditions"
submitted for publication in a volume of AnnalsNYAcad. Sc. we report on
some of our results. Under severe glucose limitations the cell is starved
for energy - primarily needed to maintain membrane energization. At less
severe conditions glucose is limiting primarily as a supplier of carbon for
cellular material. If the transcription rates for RNAI and RNAII decrease
at the same rate as the decrease in overall transcription for glucose
limitation, then copy number is relatively constant for dilution rates
greater than 0.3 hr- but increase dramatically at very low growth rates.

We are currently working on extending the model to respond explicitly
to the addition of amino acids since such additions are commonly used
commercially. We have nearly completed work on a model for glutamine
incorporation. We have also begun work (although we are in the formative
stages) on inserting a mathematical model of the lac promoter into the
plasmid-cell model. The model will allow us to predict the dynamic
response of a culture to induction with IPTG and also to predict the level
of overproduction of plasmid-encoded protein.
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An individual cell is an immensely complicated self-regulated chemical reactor that can alter its
biosynthetic machinery to meet the demands of a changing environment. The biochemical engineer
must build a large macroscopic reactor to harness the cells for desirable chemical conversions. The
design and control of such bioreactors would be facilitated with effective mathematical models of the
response of the culture to changes in nutrients or other environmental variables. Because of the
inherent internal plasticity of the cell, models must reflect the changing structure of the biomass. This
paper reviews some examples of models which contain components representing various chemical
fractions within the cell. The advantage of these models is their potential ability to predict the dynamic
behavior of a cellular population. In addition such models are potential tools for testing hypotheses
concerning cellular control mechanisms and consequently the development of more effective cell
strains. Models of populations based on a finite-representation technique using an ensemble of
chemically structured single-cell models are emphasized. These latter models are capable of accurate a
priori prediction of bioreactors to perturbations in flow rates or feed concentrations. Models which
aspire to the a priori quantitative prediction of cell population behavior must be sufficiently complex
that shifts in growth-rate limiting processes can be taken into account; consequently a high-level of
chemical structure will characterize the best models.
KEYWORDS Bioreactors. Escherichia coli, Structured mathematical models

INTRODUCTION

Biochemical reaction engineering differs significantly from traditional chemical
reaction engineering due to the nature of the "catalytic reagent". A catalyst such
as platinum on a support is relatively fixed in its catalytic properties and responds
very slowly and passively to changes in its environment. A living cell is an
independent chemical reactor; a very complex reactor with more than a thousand
individual reactions operating under a highly sophisticated control system. Be-
cause of this control system the biosynthetic capabilities of a cell actively change
in response to its environment. Thus the bioreactor engineer is faced with the
difficult task of designing a macroscopic reactor to provide an optimal environ-
ment for a multitude of individual cellular reactors nested inside the macroscopic
reactor. Optimal in this case implies maximum expression of a population's
genetic potential for a given set of chemical transformations. This inherent
plasticity of the biological catalyst differentiates biochemical reaction engineering
from its traditional counterpart.

In traditional chemical reaction engineering mathematical models are important
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to reactor design and control and also as tools to discern possible reaction
mechanisms. Perhaps in bioreactors such models are of even greater importance
because of the inherent complexity of biological systems and the difficulty in
directly measuring important growth parameters. For example, in a traditional
reactor the measurement of temperature and pressure often allow the engineer to
determine reactor state. The state of a bioreactor cannot be measured so easily
(e.g. temperature and pressure do not fix system properties).

However, we cannot usefully describe bioreactors with mathematical models
unless the underlying physical reality is understood. The next section gives a very
brief description of cellular systems.

HOW A CELL WORKS

From the engineer's point of view the key elements in a cell are enzymes.
Enzymes are catalysts which generally have a high level of specificity and fairly
rapid reaction rates at near ambient conditions (e.g. typical turnover numbers are
in the range of 102 to 106 molecules of product/min/active site (Mahler and
Cordes, 1966)). A simple bacterium such as the common intestinal organism
Escherichia coli can produce over 1000 different enzymes (Watson, 1976). Each
enzyme is a protein; proteins are polymers of amino acids with molecular weights
in the range of about 10 to 106 daltons. Only the L-isomer of each amino acid
can be incorporated into proteins. Twenty-one different amino acids are typically
used. The sequence of amino acids gives the protein its primary structure.
However, an enzyme can only function if it assumes the appropriate three-
dimensional structure (e.g. secondary and tertiary structure) which depends on
hydrogen bonds, disulfide bonds, and salt bonds as well as hydrophobic and

a. hydriphilic interactions. Since these bonds are relatively weak, most enzymes
retain their three-dimensional shape and activity over a relatively small range of
temperature and pH.

Proteins (which can have a structural roles as well as being enzymes) constitute
about 50 to 70% of the cell's dry weight. The "blueprint" for each protein is
encoded on the cell's DNA or chromosome. The code for each protein can be
transcribed to a messenger RNA molecule (m-RNA). The message is then
translated into an actual protein molecule using ribosomes (which contain both
r-RNA and proteins) as the machinery for protein production. Adapter molecules
referred to as transfer RNA or t-RNA bring the individual amino acids to the site
for protein synthesis. Typical rates of protein synthesis are twenty amino acids per
second per ribosome. The quantity of RNA in a cell is controlled to match the
cell's requirement for protein synthesis and can vary from about 5 to 20% of the
cell's dry weight.

The other major fraction of the cell's mass is associated with the cell envelope.
The purpose of the cell envelope is two fold. The first is to provide a selective
barrier to allow the passage of selected molecules in or out of the cell's cytoplasm
while preventing the entrance or escape of other molecules. The second is to
provide structural integrity and cell shape. The laizr is particularly important since
the osmotic pressure inside a bacterial cell can be quite high.
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FIGURE 1 Effect of different rates of growth on the cell mass and chemical composition of
Aerobacter aerogenes maintained in continuous culture (from Herbert, 1961; with permission).

The cell adjusts its composition to optimize either its chances of growth or of
survival depending on the external environment. For example Figure 1 shows how
bacterial composition can change with growth rate in a chemostat (or CFSTR).

These changes-reflect chnges in the biosynthetic capabilities or profile of
enzymes. Enzyme activity which is no longer needed is modulated by small
molecular weight effectors. For example feedback inhibition (usually the end
product of the reaction pathway combines with the enzyme controlling entry into
the pathway and alters the three dimensional shape of the enzyme and hence its
activity) is a short term strategy. The longer term strategy is the regulation of
enzyme synthesis often in the form of feedback repression. These mechanisms
allow the cell to change its chemical structure in response to alterations in its
external environment.

The key point from this section is that a living cell is a "catalyst" of high
flexibility. The cell's biosynthetic capabilities can change significantly. A model
that aspires to mimic a population's biosynthetic capability must be cognizant that
the cells chemical structure is highly dynamic.

MODEL CHARACTERISTICS

A conceptual framework for classifying models of microbial populations was
first suggested by Tsuchiya, Fredrickson, and Aris (1966). This framework has
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been retained although there is no universal agreement on terminology. Harder
and Roels (1982) have written a recent review on structured models which
analyzes some of these concepts in detail.

Models can be deterministic or probabilistic. A deterministic model allows the
exact prediction of future behavior based on specifying the current state vector.
Generally a total population greater than 10,000 is sufficient to allow treatment of
the system as deterministic. Since most systems of engineering interest contain
microbial populations well in excess of 10,000 we wil restrict our attention to
deterministic models.

Models are generally "structured" or "unstructured". An unstructured model
assumes that a single variable is adequate to describe the population. Typically
this single variable is related to the quantity of biomass. Implicit in such models is
the idea that the biosynthetic capabilities of the population are invariant.

A structured model divides the population into subcomponents. With a pure
culture (only one species present) the addition of structure is most often accom-
plished by dividing the biosphere into two or more recognizable chemical sub-
components (e.g. RNA, protein, storage compounds, etc.). To more exactly
characterize models, we introduce the term "chemically structured" to describe
such a model. A mixed population (e.g. one containing two or more biological species)
can be structured either chemically or by explicit recognition of each species. In
the latter case the biosphere has structure in that subcomponents are recognized
and the biosynthetic capability of the population will shift as the ratios of species
changes. However, the model for each species need not be (and usually is not)
chemically structured. We introduce the term "non-chemically structured" to
describe such systems.

A special form of non-chemically structured models for pure populations is one
that recognizes that a population is made up Sf distinct individuals. This form of
structure is referred to as "segregation". A segregated model explicitly recognizes
the distribution of properties among a population. A "non-segregated" model
(also referred to as "distributive" or "continuum") views the cell mass as a
lumped biomass which interacts as a whole with its environment. The non-
segregated model is satisfactory as long as the properties of the culture can be
adequately represented by averages. However, in some important and practical
situations moments higher than first-order are important.

Consider a population of genetically-modified cells in which the number of
plasmids is distributed non-uniformly. A plasmid is an extrachromosomal piece of
DNA which can be manipulated to code for..a foreign protein and then inserted
into a cell. With an inducible promoter the amount of protein madc per gene
could be different in different cells since gene expression is a function of
intracellular concentrations of inducer (essentially the same in all cells), of
repressor (potentially variable if the repressor gene is encoded on the plasmid)
and of binding sites on the gene of interest (related to plasmid number). Thus
total protein production could be different in a population with a wide distribution
of plasmid number per cell than in a population witf a uniform population. An
even more extreme example is the case where some cells can completely shed a
plasmid. Some cells might have thirty or forty copies of a plasmid while some
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have none. The cells without plasmids are freed of the "metabolic burden"
imposed by spending resources on plasmid-encoded functions which do not
benefit the host cell. Thus cells without plasmid can grow more rapidly than those
with plasmids and can in a few generations displace the slower growing but
productive plasmid carrying cells. Thus a culture where every cell has ten plasmids
will be potentially much more productive than one where half the cells have
twenty plasmids while the other half have none. The productivity of such cultures
cannot be adequately forecasted by non-segregated cultures.

With these concepts of structure ("chemical structure", "non-chemical struc-
tured", and segregation) the role these models are required to fulfill can be
delineated. First the concept of "balanced growth" needs to be defined. Campbell
(1957) originally wrote "... it will be convenient to say growth is balanced over a
time interval if, during that interval, every extensive property of the growing
system increases bv the same factor". Basically in balanced growth the composi-
tion of -i "typical" cell is time invariant. Typical balanced growth situations are
-xponlential growth (growth under nutrient saturated conditions) in batch culture
and steady-state conditions in a CISTR (or chemostat).

Intuitively one might suspect that a non-structured model might be satisfactory
to describe a balanced growth situation since the biosynthetic capability of the
cellular population is constant and only the quantity of biomass is required. On
the other hand, most growth situations are associated with constantly changing
biosynthetic capacities: transient responses in a single-state CFSTR, all behavior
(steady-state or transient) in a multiple-staged CFSTR, and batch growth other
than the exponential phase (see Barford and co-workers (1982)). Under such
dynamic conditions one would suspect that a model would have to contain some
type of structure to capture the behavior of a culture with variable biosynth -tic
capabilities. Such intuitive arguments are supported by mathematical derivations
(originally demonstrated by Fredrickson et al. (1971) and more recently discussed
by Harder and Roels (1982)). The mathematical derivations have shown that only
structured models can possibly predict the growth-of -microbial populations during
unbalanced growth. Unbalanced growth must be considered in designing bioreac-
tors.

The design of a bioreactor system (number of reactors, batch or continuous,
steady-state operation versus cyclic operation) and of a process control strategy
for such systems is significantly aided by good models and clearly these must be
structured models. Additionally such models offer important vehicles to test
hypotheses about cellular control mechanisms and the prediction of the dynamic
response of a bioreactor is a much more severe test of a model and its input
mechanisms than is the prediction of only steady-state behavior.

This author believes that models of cell populations can only be complete if
they contain both "chemical structure" and "segregation". Models which contain
only "chemical structure", or "non-chemical structure" or "segregation" arc
significant improvements over unstructured models but in each case ignore poten-
tially crucial features in the performance of the cell population. However, models
which contain both "chemical structure" and "segregation" are complex and
consequently forms with only one-type of structure are more easily constructed
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and require less computational time. The engineer must strike the balance
between reality and practicality.

CONSTRUCTION OF CHEMICALLY STRUCTURED MODELS

The first step to the construction of any mathematical model is the development
of a conceptual model. Here an understanding of cell biology is indispensible.

The first decision is whether segregation is to be considered; for the purposes of
this initial illustration assume that a non-segregated model is to be considered.
Further, consider a batch reactor with an initially specified volume of fluid. The
fluid is divided into two compartments--one abiotic and one biotic, representing
the biomass. Clearly the growth of the cell population will result in an increase in
the volume of the biotic mass, while the volume of the abiotic compartment will
decrease. Many structured models have not adequately accounted for the changes
in volume of these compartments.

The second decision is how to subdivide the cell biomass into compartments.
For a chemically structured model at least two components must be specified. The
other extreme would be a model which divided the cell into all of its chemical
components. Since even a simple bacterium will have over a 1000 chemical
species, such a model is unrealistic. The actual number chosen will represent a
compromise between physical reality and mathematical complexity and will vary
accordingly to the goals of the modeler. It is important that all chemical species be
included by lumping them into a recognizable model component (e.g. all protein is
represented by component P). Models intent on testing cellular control mechan-
isms will usually require the greatest detail.

The third step is to postulate the relationships among components. Typically a
series of pseudo-chemical reactions are written. For example:

C, +,aC, +-- -.---*C+- -- (1)

where C, C,, and Ck are the intracellular or intrinsic concentrations of comnpo-
nents i, j, and k, and a is a stoichiometeric coefficient. Equation (1) suggest that
components i and j combine (ratio of amounts of j to i is a) to form k. Other
unaccounted components may be involved in the reaction as products. The
reaction represented by Eq. (1) is not a single enzymatic step but may represen
many such steps. The pseudo-chemical reactions arc used basically to keep track
of the stoichimetry.

Since non-elementary reactions are used, the reaction kinetics are nonimalls
more complex than suggested by a cursory glance :tm I1. (11 The kinetic
expressions which are postulated must relate to the chemical cozsersiol in Vlq 0 1
but will consider cellular control mechanisms and other mitcactioris , I'or txanllc
a possiLie kinetic expression for Eq. (1) might be:

rflk = k ___ __jt

whr i th( a t te
where r, is the rate of formation of k by the ach pioc ',, k., is talc constant
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(units of gm k/L cell volume-h), C and C are the intrinsic concentration of i and
j, and K, and K, are saturation parameters. Saturation kinetics were used in Eq.
(2) to suggest enzyme kinetics and would give the appropriate behavior in the
extremes. That is zero reaction if either i or i were absent and a constant rate of
reaction when i and i are in excess. For a single enzyme with two substrates the
reaction form in Eq. (2) can be derived as a special case of two-substrate enzyme
kinetics (Mahler and Cordes, 1966). However, under most circumstances the
conversion of i and i to k requires multiple enzyme steps. In such cases the
approach of Kacser and Burns (1968, 1973) can be used to more rigorously derive
an overall kinetic expression, at least for simple pathways. The expression in Eq.
(2) may well be incomplete. For example, many enzymes or pathways are subject
to feedback inhibition by the product of the pathway. In such cases Eq. (2) might
he written as:

-- . ++.) (3)

where Ck is the intrinsic concentration of k and Kp is an inhibition constant. Such
a modification will mimic feedback inhibition by giving a decreased reaction rate
in the presence of a high concentration of k.

Since model components i, j, and k may be aggregates of many chemical
species, it is often impossible to exactly capture the basic chemical kinetics. The
modeler must then be content with expressions that are consistent with observed
overall mass balances (e.g. at the cell's maximum growth rate z gm of k are
formed per h) and give the right general dependencies on all substrates and
modifiers. If a single enzyme controls then it is possible to relate the saturation
parameters in expressions like Eq. (2) to actual experimental values. Otherwise
the saturation parameters should be related to the normal intracellular levels of
components (i, ;-and k).

Once the reaction kinetics have been determined an overall model can be
formuJf.d to predict the dynamic response of the culture. In writing the reactor
balances the modeler must remain aware of the expanding nature of the biomass
and the necessity to write the kinetics in terms of intrinsic concentrations. Clearly
the enzymes within a cell only respond to intracellular concentrations. One
exception is that the extrinsic concentration (gm/L or reactor volume) of sub-
strates can be used. The use of the abiotic concentrations with substrates implies
that the intracellular and extracellular concentration of substrate are in dynamic
equilibrium. During transient response this assumption may be weak and explicit
recognition of extracellular and intracellular concentrations of substrate must be
made.

Although these constraints are fairly obvious, they have been ignored in many
chemically structured models. Fredrickson (1976) was the first to point out this
error. The correct formulation of a chemically structured, non-segregated model
for a non-flow reactor is:

dldt(mniC;) = ,,, r., (4)
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where: m =total biomass in the system at time t
1= volume of biomaterial per unit of biomass

Ci- mass of the jth component of biomaterial per unit volume biomaterial
at time t--essentially the intrinsic concentration of j

roj=rate per unit volume of biomaterial at which the ith component of
biomaterial appears (or disappears) because of the a th process

Normally V will be a constant and is essentially the reciprocal of the cellular dry
weight density. Equation (4) can be rearranged to yield:

dat = X, (5)

where:

/I m d/dti (6)

The symbol t, is the specific growth rate, h-', and the term "-gC," represents the
dilution of intracellular components brought about by growth. It is this term
which has been neglected in many structured models.

The above equations could also be written in terms of mass concentrations.
That is X (mass of jth component per unit mass of biomaterial) instead of C,
Clearly Xj = C V. Other formulations of the same concept can be used.

Although the above approach was illustrated for non-segregated models, the
general concepts apply to at least some forms of segregated models (e.g. those
involving construction of population models from single-cell models using a
fi nite-representation technique).

Some characteristics of good chemically structured models are:

1. A minimum of adjustable parameters; most parameters should be determined
directly from independent experiments or estimated by-an objective series of
rules,

2. Mathematically tractable,
3. High-fidelity to biological pi-ocesses, and
4. Be experimentally verifiable.

With these basic concepts in hand we can turn our attention to examples of
chemically structured models. It is not the purpose of this paper to exhaustively
review all models but to illustrate various approaches to modeling.

T-XAMPLES OF CHEMICALLY STRUCTURED MODELS

Two of the first chemically structured models proposed were those by Ramkrishna
er al. (1967) and Williams (1967). Both were two component models. Ramkrishna
et al. (1967) divided the cell population into a G-mass (RNA and DNA) and a
1)-mass (proteins (and by implication rest of the cell mass)). Williams (1967) split
the cell mass into a synthetic component (primarily RNA) and a structural-genetic
component (primarily DNA and protein).

These models were major conceptual breakthroughs in the art of modeling the
growth of cell populations. Both models and many that followed have been flawed
by not including intrinsic concentrations of internal cell components.
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To illustrate these approaches consider Williams' (1967) original model. In the
original model the following components were defined:

A = concentration (mass per unit volume of reactor) of limiting nutrient
D =concentration (mass per unit volume of reactor) of structural and genetic

component
R = concentration (mass per unit volume of reactor) of structural and genetic
M = total biomass = R + D

All of the above are extrinsic concentrations. Williams (1967) assumed that
component A was extracted from the medium and used to produce component R.
Component D was assumed to be formed from R. The following equations were
then postulated for R and D formation:

dRldt = ktAM- k 2 RD (7)

dDldt = k2RD (8)

The above equations are conceptually incorrect since they are based on extrinsic
concentrations of intracellular components.

The correct expression for Eq. (7) can be written:

dR/dr = M [kA(M/M)-k 2(R/M)(DIM) (9)
Rate of Biomass rate of rate of conversion

change of R concentration nutrient of R into D per
concentration uptake per unit biomaterial

unit mass
of biomaterial

or
RD

dR/dr = kAM- k2 M (10)

which is clearly different than Eq. (7). Equation (4) could also have been used
directly to derive Eq. (10): i.e.

d(R/M)/dt = ktA(RIM + D/M) - k 2 -M-- tR/M (11)

Equation (11) reduces directly to (10) when the differentiation on the left hand
side of (1) is carried out, and the definition for tr (ti =_ l/MdM/dt) is substituted
into (11).

The correct expression for the D component is

dI)ldt = Mfk2RIM • I)/X1 - k 2RI)IM (12)

which is different front Eq. (8).
The above discussion says nothing about the reasonableness of the kinetic

expressions chosen by Williams (1967), but only zhe correct conversion of those
kinetic concepts into mathematical terms. A potential point of disagreement, for
example, could be whether biomolecular kinetics or saturation kinetics would be
preferable.

A better example of a simple chemically-structured, non-segregated model is

Aa
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the one described by Harder and .-Roels (1982). They proposed a three-
compartment model. Three-compartment models have one distinct advantage
over two-compartment models; the addition of an extra component makes it
much easier to relate model components to chemical species and to the organiza-
tion of cell structure. Consequently the estimation of parameters from
experimental data is far easier with three compartment models than two.

The structure of their model is depicted in Figure 2. The K compartment is
RNA, the G compartment is protein, and R is the remainder of the biomass
consisting primarily of carbohydrates (including storage compounds), lipids, and
precursors. It is presumed that the limiting substrate (energy and carbon source)
enters the cell population and is immediately incorporated into the R component.
The K and G components are made from precursors in the R component, and K
and G can be degraded ("turn-over") to yield precursors which return to the R
compartment.

The kinetic expressions suggested by Harder and Roels (1982) were based
explicitly on assuming a pseudo-steady-state for ATP (the cell's energy currency)
and precursors. The justification for such a hypothesis is that the relaxation times
for adaptation of ATP and precursor concentrations are much less than for the
other components (K, G, and R). Yield coefficients (essentially stoichiometric
coefficients) based on ATP and precursors can be estimated from a knowledge of
basic cell biochemistry and coupled to the requirements for the uptake of
substrate.

This model satisfies most of the constraints of a good model and has the virtue
of being computationally simple. One disadvantage of the model includes the
assumption of a very tight coupling of ATP production with ATP needs-an
assumption which ignores energy-spilling reactions (see Stouthamer, 1979).

TURN OVERI

R

TURN OVER

FIGURE 2 Schematic representation of a three-compartment chemically structured glowth m(lcl
(from tarder and Rocts. 1982, reproduced with permission).
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Further, the kinetic relationships among K, G, and R are based on relationships
from steady-state continuous culture experiments, and consequently may be
inadequate for predicting transient responses. The other criticism is that the
model was to be applied to an activated sludge system; consequently, the authors
implicitly assumed that parameters derived primarily from studies on E. coli in
pure culture could represent the average parameters from a very diverse group of
organisms. Interactions among species in the population were ignored. Some, such
as predation by protozoa on bacteria, would be expected to alter parameter values
and would give the observed value of the parameters a time dependence since the
ratio of protozoa to bacteria can be time dependent. Nonetheless such three
compartment models represent an attractive approach, particularly for pure
cultures, when computational speed is important and the available data base for
parameter estimation is small.

Another approach to structure is to view the cell as a process and provide
structure by dividing the process into distinct steps. Chiam and Harris (1982) have
developed a simple model of this form (see Figure 3). This model was tested by
comparison to the data of Mor and Fiechter (1968) (see Figure 4) and the model
predictions are in reasonable accord. Unlike the simple unstructured Monod
equation, the model predicts a decrease in yield coefficient at both high and low
dilution rates as observed in this phenol utilizing system. This comparison is not a

SUBSTRATE A IN AOUEOUS (ABIOTIC) PHASE

ASSIMILATION STEP I.

N SUBSTRATE A IN BIOTIC PHASE

I STEP 2.

INTERMEDIATE B IN BIOTIC PHASE

,ETABOLISM STEP 3. / STEP 4.

BIOMATERIAL C (MAINTENANCE ENERGY)

ORGANIC PRODUCT E ORGANIC PRODUCT E

CARBON DIOXIDE F CARBON DIOXIDE F

\STEP /5.

EXCRETION ORGANIC PRODUCT E IN AQUEOUS PHASE

CARBON DIOXIDE F IN GAS PHASE

FIGURE 3 Schematic representation of a model structured from a process perspective (from Chiam
and Harris, 1982; with reproduced permission).
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FIGURE 4 Comparison of predictions from Chiam and Harris (1982) with the data of Mor and
Fiechter (1968). Points refer to experimental data and the continuous line to model predictions. The
parameter values were obtained from a fitting technique (from Chiam and Harris, 1982: reproduced
with permission).

very stringent test of the model's capabilities; the p'iaictiop ,L steady-state
behavior is far easier to achieve than the prediction of transiit responses.

A novel approach to structure which avoids the use of complex kinetic
pathways has been advocated'by Ramkrishna (1983). This "cybernetic perspec-
tive" assumes that the cell behaves optimally with regard to the allocation of
existing resources among parallel enzyme-synthesis systems.-This approach has
been applied with some success to growth in multiple substrate systems.

A large number of other structured non-segregated models have been written
(see Bazin, 1982 for other examples). Such models may be fitted to transient
response data and give reasonable correlations of experimental data. However,
such models cannot give a priori quantitative predictions of population response
to transient conditions over a range of growth conditions using inoculum from
different environments (see Daigger and Grady, 19S2). The approach described in
the next section, single-cell models as a basis for population models, can make
such predictions.

SINGLE-CELL MODELS AS A BASIS FOR POPULATION MODELS

The previous models have looked at the cell population as a lumped biomass. An
alternative view is to recognize that a cell population represents a complex
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averaging of the biosyrnthetic capabilities of individual members of the popula-
tion. The remainder of this paper is devoted to the single cell perspective. A type
of chemically-structured, non-segregated model is created when we construct a
single-cell model and view that single-cell as representing an "average" cell in the
population. A population model containing both chemical-structure and segrega-
tion can be constructed by using a finite-representation technique whereby a
fraction of the total population is represented by a single-cell model. Such models
can predict the distribution of biosynthetic or other properties within the popula-
tion. Shuler, Leung, and Dick (1979) first suggested this possibility as a means to
avoid the mathematical difficulties of solving the integro-differential equations
involved in writing a chemically-structured segregated model from the population
point of view.

The use of single-cell models to predict the average behavior of a cell in a
population has several potential advantages. Certainly such models make it easier
to incorporate biochemical structure into a model; cell geometry (e.g. surface to
volume ratios) can be readily incorporated; and temporal events or spatial effects
can be included that would be virtually impossible to incorporate into lumped
biomass models. As discussed, the single-cell modeling approach can be readily
extended to develop chemically-structured segregated models of cell populations.

One of the first examples of single-cell models was that suggested by Von
Bertalanffy (see Tsuchiya et al., 1966) in 1942. In his model growth was a result
of competition between the processes for nutrient assimilation and for endogen-
ous metabolism. Many examples of other single-cell models could be given (see
Shuler and Domach, 1983), but most are flawed by unrealistic constraints on
cellular growth mechanisms or do not reflect current understanding of cell
biology.

An ambitious type of single-cell model which is biologically sound is one
proposed by Lee and Bailey (1984a) for the production of plasmid encoded
proteins. A schematic of the model is given as Figure 5. The biochemical events
controlling the replication of the plasmid A dV are well known and can be
accurately modeled (Lee and Bailey, 1984b, 1984c). In addition accurate models
have been formulated for the lac promoter (Van Dedem and Moo Young, 1973;
Imanaka and Aiba, 1977; Gondo et al., 1978). An inducible promoter is a
chemical switch which can turn on or off the transcription and translation of
information coded on a gene into a functional protein. Lee and Bailey (1984a)
have incorporated detailed molecular models of plasmid replication and lac
promoter with semi-empirical expressions for host cell functions. The model
assumes regular plasmid segregation (i.e. each daughter cell formed by binary
fission receives an equal number of plasmids). This model is a chemically
structured non-segregated model, since it is based on a single-cell as an average
cell in the population representative of the total population.

The model by Lee and Bailey (1984a) has a larger number of parameters than
those models previously discussed. However, these parameters can largely be
evaluated from independent experiments, and the structure of the equations for
plasmid replication and for gene expression are consistent with our knowledge of
molecular biology. The model is a quite power.'ul one. Models with a large
number of independently determinable parameters embedded in a kinetic structure
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FIGURE 5 Schematic of Lee and Bailey's (1984a) model for A dV plasmid replicon and its
interaction with E. coli host cell functions. Definition of symbols arc: I = initiator protein. R
repressor protein. G = number of plasmid molecules per cell, ori* =activated origin. REt' replication
complex. mRNAR = messenger RANA for repressor protein. mRNA, messenger RNA for initiator
protein. F = termination efficiency, and "t = transcription efficiency. The dotted line shows the regulat-
ory action of repressor protein and initiator protein. Traces (a), (b), and (c) represent replication.
transcription, and translation processes, respectively. Line (d) indicates the involvement of replication
protein of the host cell in formation of replication initiation complexes (from Lee and Bailey, 19S4a;
with permission).

consistent with experimental observations are, at least in principle, intrinsically
superior fo models with three or four empirical parameters, particularly when the
empirical model structture cannof reflect known kinetic interactions. This superior-
ity is reflected primarily in testing hypotheses concerning cellular mechanisms and
in making predictions on growth dynamics different from the initial data base. The
construction of models with complex kinetic structures are generally not practical
for engineering applications unless a fairly extensive data base already exists.
Fortunately the explosion in the literature in cellular and molecular biology
provides an ample and generally untapped base for such model building. Once the
engineer is readily acquainted with such literature, the construction of complex
models is not difficult or unduly time-consuming.

Adequate experimental data to rigorously test the model predictions under a
wide variety of growth conditions are not currently available. However, Lee and
Bailey (1984a) have presented a comparison (see Figure 6) of predictions of
recombinant protein activity to data on the activity of plasmid encoded f3-
lactamase. The model predictions are generalized for the production of an
unspecified protein, so that a comparison to /3-1actamase requires an estimate of
the specific rate of decay for 13-actamase. Satisfactory agreement of predictions
and experiment were obtained for a decay rate of cli. 0.001 maimi

However, the model can be criticized, primarily for the simplifying assumptions
involved in the integration of the kinetic expressions for plasmid replication and
gene expression with host cell functions. The host cell functions are empirical
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FIGURE 6 The effect of growth rate on cloned-gene protein. Assumed decay constants of product
protein are given near each curve (units are min-'). The experimental data (0) were taken from
Engberg and Nordstrom (1975). (Figure from Lee and Bailey, 1984; reproduced with permission.)

relationships for cell replication, transcription, and translation processes. They
are soundly based on experimental observations. These empirical expressions
require as input a value for the cell's growth rate, t-. The host cell functions do
not respond explicitly to changes in the abiotic environment such as concentration
of a limiting-nutrient. Thus the model is restricted to the range of growth rate
used to establish the empirical expressions and may well fail under. -transient
growth conditions where substrate concentrations and growth-rate become de-
coupled.

Another potential weakness is that the model assumes that the host cell
functions are not altered by interactions with the replication of plasmids and
expression of r-protein synthesis. The presence of the "metabolic burden" posed
by plasmid encoded functions will alter cell growth rates. Although p- = 0.8 gen/hr
in a glycerol minimal medium for the wild-type cell, the growth rate of the
genetically-modified cell will almost certainly be less. How much less is difficult to
predict, and it is not clear to this author how the model could predict such
differences or how to use the model without an experimental knowledge of the
actual growth rate of the recombinant organism.

These comments suggests ways in which the model is limited. The reader should
nonetheless be aware of the pioneering nature of the model and of its importance.
This model is the best one currently available to explore important questions on
mechanistic control of plasmid copy number and of gene expression when the
growth rate is altered. Careful attention to this type of model is warranted by both
experimentalists and modelers.

The model with the greatest fidelity to cellular biochemistry is probably the one
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suggested by the Shuler and colleagues (Shuler, Leung, and Dick, 1979; Shuler
and Domach, 1983; Domach et al., 1984; Domach and Shuler, 1984a, Lee, Ataai,
and Shuler, 1984; Ataai and Shuler, 1984a) for the bacterium, Escherichia coli. A
schematic of the single-cell model is given in Figure 7 as well as a definition of the
model components.

In this approach the cell is treated as an expanding reactor free to change shape
and volume and to respond explicitly to changes in glucose or ammonium
concentrations in a minimal medium. Glucose, and/or ammonium ion, can be the
limiting nutrient(s). This model contains sufficient detail that it provides a good
tool for quantitatively testing the plausibility of cellular control mechanisms. It
provides a holistic view of the cell and questions about any subcomponent can be

A M, 2Pm--eR

Aeiu wit glucose aoiate compoundsmingM nuret DAtheieson ecelasus

the cell) M,= non-protein pars of cell envelope (as-
WV=waste products (CO2 . H 2 0, and ace- sume 16 7% peptidoglycan. 47.6%

tate) formed from energy metabolism lipid, and 35.7% polysaccharide)
during aerobic growth M s =glycogen

Pt = amino acids PG = ppopp
P2 = ribonucleotides E2, E a = molecules involved in directing cross-
Pa = deoxyribonucleotides wall formation and cell envelope
P, ==cell envelope precursors synthesis-the approach used in the

= =protein (both cytoplasmic and en- prototype model was used here but
velope) more recent esperimental suppor is

M2,, = immature "stable" RNA available
= mature "stable" RNA (r-RNA and r- GLN = glutamine

RNA-assume 85% r-RNA through- E, gluta..tine synthetase
out) *-he material is present in the external environment.
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examined in detail and still be related to the observable performance of the whole
cell. The model also provides a tool to test the translation of in vitro results to in
vivo ones.

The cell is treated as an expanding reactor and mass balances can be written for
each component. The equations are too complicated to justify a detailed listing
here but such listings are available in original references (Shuler and Domach,
1983; Domach et al., 1984). As an example, consider the equation for DNA
synthesis:

MJdt = Al,( P3 V ' A/V F (13)
kM;,P,+PjIVI \KM,A, , + A,/ Vi

where M, is amount (not concentration) of DNA. r is time, P3 is the amount of

deoxynucleotides. A 2 is the amount of intracellular glucose and low molecular
organics, V is the cell volume, F is the number of replication forks, [L is a rate
constant for the maximum rate of )NA formation per fork, and K,,p, and KM,,,
are saturation constants. The value of f-, is readily determined from published
values for the size of the chromosome, the number of forks present, and
measurements of the time required for the fork to transverse the chromosome
under maximum growth conditions. A value for K is directly available from the
literature. The value for K,,, was estimated as 1/25th of the normal intracellu-
lar value of A 2 at maximum growth in minimal medium. The determination of F
involves a separate set of equations associated with the control of initiation of
chromosome replication. The model was used to test the plausibility of six
hypotheses about mechanisms -ontrolling initiation and found only one mechan-
ism and its modifications -could make quantitatively plausible predictions about
the observable pattern of chromosome replication.

The model is complex with a large number of kinetic parameters. Most of the
88 parameters could be estimated independently as described in the previous
paragraph for Eq. (13). Four parameters, associated with the rate of cross-wall
formation were determined by running the model at conditions supporting
maximum growth and at a glucose concentration supporting approximately half-
maximal growth rate. The values of these parameters were manipulated primarily
to obtain the right septation rate as evidenced by rea: :mable predictions on cell
geometry and the length of time between chromosorme termination and cell
division-and the actual time of chromosome replication. lFxtension of the model to
predictions of the response to nitrogen-limitation required no adjustable
parameters--only values obtained from in vitro experiments on the key enzymes
for ammonium incorporation into the cell. Thus without the addition of any
adjustable parameters the model can adequately predict system response to
growth at a variety of ammonium concentrations (ShulCr and l)omach, 1983). The
model makes quite reasonable predictions of steady-state cell behavior. Sce for
example Figure 8.

The model has also demonstrated the capacity to make predictions about
cellular behavior prior to the actual confirming experimental observations. In the
prototype model (Shuler et al., 1979) we found that tie cell width varied slightly
during the cell cycle. Marr, Harvey, and Tentini (1966) had measured cell widths
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FIGURE 8 Variation of cell volume with steady-state growth rate. Model predictions for glucose-
limited chemostat gro.' thare indicated by the solid line while experimental data (Coulter Counter
measurements) for glucose limited growth are indicated with a dashed line, while the corresponding
data are given as 6. Data from Helmstetter (1974) for glucose-limited growth is given by W.
Reproduced with permission from Shuler and Domach, 1983.

and concluded that the cell width was constant throughout the cell cycle. Their
technique, however, was precise to only :0.03 jim and the variation within the
model cell cycle was nearly within this limit. The model's prediction of varying
width during the cell cycle was confirmed by experimental evidence from Trueba

and Woldringh (1980). They observed about a 8% difference in cell width
between the extremes of the division cycle with somewhat larger percent devia-
tions with slow growing cells. The minimum width was observed to occur just
before cell constriction was readily visible. In Domach ei al. (1984) the maximum
predicted variation in width was 8, 9, and 9% at specific growth rates of 0.95,
0.51, and 0.24 ht , respectively. The minimum width was predicted to occur after
the initiation of cross-wall synthesis but before 50% constriction with the actual
timing of the minimum point being dependent on growth rate. The ability of the
model to make significant quantitatively accurate predictions about cell behavior
prior to the actual observation of such behavior provides strong support for the
fidelity of the model to actual cell biology and fc- the robustness of the model.
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The model has been extended to anaerobic growth situations by altering the
mechanism for energy generation in the cell (Ataai and Shuler, 1985a). Carbon
and electron balances must be added so that the amount of ATP and reducing
power generated meet the requirements for consumption. The anaerobic model,
which left the non-energy related part of the aerobic model intact, can make
accurate predictions of cell size, cell composition, growth rate, and amount and
composition of metabolic end products (primarily acetate and ethanol and succi-
nate) (see Figure 9). One conclusion from this work is that all non-energy
producing processes remain unaltered in kinetics when a faculative organism
switches from aerobic to an anaerobic growth. Thus the base model has proven to
be a robust one capable of extension to growth conditions significantly different
from those used in its initial derivation.

A single-cell model when used to represent an average cell is a form of a
chemically-structured non-segregated model. Certain behavior can only be pre-
dicted by recognizing the differences among individuals in a population. Unlike
other non-segregated models a single-cell model can be easily incorporated into a
population model (Shuler, Leung, and Dick (1979)). Three examples of the
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FIGURIi 9 Fiffect of growth rate on cell volume and by product formation for anaerobic glucose-
limited chemostat growth of E. coli. 1'he basis of the experiment is I mole of glucose fermented. The
dotted line is the model's prediction of the total ethanol plus succinate formed while A represent
experimental measurements. The dashed line is the model's prediction of acetate formed while U
represents the amount of acetate experimentally measured. The predicted cell si.e is indicated by the
solid line and the cell volume measured by the Coulter Counter is given as 0 No adjustable
parameters were used in obtaining these results. Data from Ataai and Shuler, 198';a
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construction of population models are given by Nishimura and Bailey (1980),
Alberghina, Martegani, and Mariani (1982) and Domach and Shuler (1984b).

Nishimura and Bailey (1980; 1981) have demonstrated the feasibility of con-
structing a population model from a knowledge of a single-cell kinetics and
mechanisms for control of replication. The general approach is detailed in Figure
10. Semi-empirical relationships for the timing of cell division, cell growth, and
the timing of initiation of DNA replication were used as the basis for the
single-cell model for E. coli. The single-cell model is chemically structured in that
DNA content and total cell mass are both included. The DNA configuration at
any time is known and consequently gene dosage can be readily calculated.
Nishimura and Bailey (1980) accomplished the difficult task of determining the
analytical solution of the distribution of cell mass and DNA content in a
population of E. coli. The required input for the model was the cellular specific
growth rate fI(t). The resulting model was able to predict the correct trends (a
non-quantitative comparison) in transient responses to shift-up conditions (see
Figure 11).
The chief potential disadvantage in the model is that the cellular specific growth

rate ft(t) is considered to be a known function of time. Additionally the timing of
the cell division cycle is deterministic once p.(t) is specified. In reality a probabilis-
tic approach is necessary since there is a distribution of division times among cells
in balanced growth for a culture at a known growth rate. Consequently the
property distributions are likely to be broader than prediction by this model.

A population mode with a more detailed chemical structure and the ability to
explicitly respond to external changes in nutrient levels has been constructed from
our single-cell model (Shuler and Domach, 1983: Domach and Shuler, 1984b).

CELL

ENVIRONM4ENT

CELL INITIATION OF DNA
GROWTH DONACHIE DNA COOPER- CONFIGURFATION

REPLICATION T AND CELL
*HELMSTETTrR DI VISION

2' m, TIMING

DAUGHTER BINARY FISSION

CLL MASS

I(URE, 1(1 Schematic of a model for cvoordinat-d niass and )NA synthesis and cell division fot
individual cells of U. coti. 0onachie refers to a simple model relating cell growth to initiation of
chromosome replication (Donachie, 1908). Cooper-tlelmstetter refers to a model relating growth rate
to the timing and rate of replication of the chromosome and the timing of cell division (Coopei and
lielmsetter, 1968) (reproduced with permission from Nishimura and Bailey. 1980)
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of coefficient of variations of cycle time to fission size is 1.7) agree well with
experimental observations (Schaechter et al., 1962). The correlation coefficient
calculated for parent-offspring cycle times was -0.4 which is slightly more positive
than the theoretical value of -0.5 calculated by Koch and Schaechter (1962) but
agrees well with the experimental value cited (-0.37). The negative correlation of
parent-offspring cycle times has been widely observed.

Using a single-cell model (Shuler and Domach, 1983; Domach et al., 1984;
Domach and Shuler, 1984a; Ataai and Shuler, 1985a) with suitable modifications
to account for asynchrony in the individual cell cycle allows for the construction of
a population model. We use a finite-representation technique in which the
behavior of a sinalI fraction of the population is represented by a single computer
cell. The key item for the reader to note is that no adjustable parameters arc
added to the single cell model to make predictions on the behavior of a

population in a bioreactor.
Domach and Shuler (1984b) have used a population model consisting of 225

computer cells and mass balances on a CFSTR to predict the response of a culture
to upsets in reactor conditions (e.g. feed flow rates or substrate concentrations). A
flowsheet summarizing the operation of the population routine is given in Figure
13. Such a model accurately predicts the transient behavior of the culture (see
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1"I(-I RE 13 A flow sleet for the operation of a hijtte-representation propulation routine. IF-tch
computer cell (i = I to 225) is activated for a set "on time" (AT= 0 01 h). Once all 225 cells have
reacted with the environment, a mass balance is done to determine substrate levels and washout of
cells. (Reprcduced with permission from Domach and Shuler. 19846).
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Figures 14 and 15) with respect to overall performance (e.g. substrate consump-
tion) and the time-dependent change of property distributions in the culture (e.g.
size distributions). Similarly Ataai and Shuler (1 985b) have subjected a single cell
model for the anaerobic growth of E. coli B/rA to perturbations in flow rate and
glucose concentration in a glucose-limited chemostat. A comparison of model
predictions of RNA content and unconsumed glucose concentrations to actual
data for a step change in feed glucose concentration (1.0 q/L to 1.88 q/L) is given
in Figure 16. For a flow perturbation (dilution rate of 0.38h ' to 0.55 h- ') the
disturbance lasts longer (8 h vs 3.5 h), and the amount of unconsumed glucose
reaches a higher level (ea. 180 mq/L vs 90 mg/L). The distribution of cell sizes is
also well predicted in both cases.

To understand the importance of this approach to chemically structured-
segregated models, the reader must realize that the attempt to generate models of
similar characteristics from the population-balance point of view has been
impossible-largely because the resulting equations have proved mathematically
intractable.

Other attempts to develop models for the a priori quantitative predictions of
transient behavior of cell populations have been generally less successful than the
approach of using biologically detailed single-cell models in a finite-representation
scheme. Daigger and Grady (1982) have recently determined that the ability of
most other mathematical models (particularly structured models that presume that
the cellular level of RNA is alwas growth rate limiting) to predict transient
responses is inadequate. Daigger and Grady (1982) concluded that the RNA level
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FIGURE 14 Transient response of aerobic glucose-limited chemostat with I. colt to a step decrease
in dilution rate from 0.91 h -' to 0.65 h I at time = 0. Model predictions of substrate concentration are
given by the solid line. while experimental values are given by 0. Predictions of dimensionless cell
number are given by the dashed line. while the open circles (0) denote measured values. Predicted
variations in the RNA content of the cell are given by the dotted line. Measured values of the median
cell volume are reported in terms of threshold units on the Coilter Counter and displayed as the
dash-dot line. The initial lag in cell respons and physiological state is predicted by the model (e.g.
RNA content) and is consistent with the experimental measurements on cell volume. Data and
predictions taken from Domach and Shuler (1984b).
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FIGURE 15 Shift in predicted and observed cell size distributions due to a step decrease in dilution
rate of 0.91 h-1 to 0.65 h-' in an aerobic glucose-limited chemostat with E. coli. A finite-
representation technique using 225 single-cell models was used (Domach and Shuler, 1984b). The
model predictions are given as a histogram and each 0 represents the relative amount of the
population in that cell class. The Coulter Counter measures cell volume and displays a continuous
trace, and the experimentally measured distribution is indicated by the cell line. A smoother prediction
of the cell size distribution can be obtained if the number of single-cells in the population routine is
increased. The medium cell volumes determinsd were: 0.65 g m3, 0.54 gml , 0.46 ILm

3 , and 0.42 rn3

at t = 0, 2.88 h, 4.0 It, and 8.0 h, respectively. The model could be used to output distributions of any
parameter (e.g. RNA, DNA, etc.). Reproduced with permission from Domach and Shuler, 1984b.

did not exclusively control the nature of the transient response and that other
unidentified components varied with the steady-state specific growth rate that the
culture had been subjected to prior to shift-up.

Their observations are consistent with the view that a cell contains many
potentially growth-rate limiting steps and the actual controlling steps depend on
cell history and the nature of the shift. This view supports our contention that the
accurate a priori prediction of transient response requires models which mimic the
actual control systems in the cell; all of the major control systems must be
included because of their interactions and the potential for switches in the
combination of systems which may be growth-rate controlling. Thus a model

which aspires to accurate dynamic predictions ovet a range of growth conditions
must be complex. We believe that our single-cell model may be near the
minimum level of complexity to allow a priori quantitative predictions of transient
behavior over a reasonable range of experimental ccnditions. We currently have
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FIGURE 16. Transient response of an anaerobic glucose-limited chemostat with E. col, to a step
change in glucose feed concentration (from 1.0 g/L to 1.88 g/L). The predicted extrinsic concentration
of glucose in the reactor is shown by the solid line; the experimental values from two independent but
identical experiments are given as 0 and A. The predicted transient in cellular RNA content is given -

as a dotted line; the experimental values as N. The dashed line indicates the model prediction if those
predictions are normalized to the same initial RNA value as determined experimentally. It is
important to note that the model predictions are made without using adjustable parameters or a fitting
procedure. (Data from Ataai and Shuler, 1985b).

initiated a sensitivity analysis to better discern what steps may be most strongly
growth-rate affecting under a variety of growth conditions. Such an analysis may
suggest opportunities for reducing the complexity of our model, but we anticipate
that the chemical structure cannot be greatly altered without adversely effecting
the quality of predictions for transient behavior.

The use of finite-representation techniques offers other advantages. For exam-
pie such a model generates by itself the underlying distributions of cycle time and
division mass found in real populations. The partial integro-conservation equa-
tions in age- and mass-structured models (e.g. Fredrickson and Tsuchiya, 1963;
Eakman et aL, 1966) require a prior knowledge of probability density functions.
The use of finite-representation techniques circumvent the major problems in
population balance equations and require no input data once a complete single-
cell model is formulated.
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As currently practiced the finite-representation technique suffers a limitatioh.
due to "peak wander". Currently 225 cells represent the population. Within a
time increment of 0.01 h only about 10% of the population will undergo division
which results in a statistically small sample to be randomized. Due to the small
size of the sample, the model predicts slight variations in peak position and shape
even under steady-state growth conditions. The stability of the predicted size
distribution (or distribution of any other property) can be improved by increasing
the number of cells; the improvement would be proportional to the square-root of
the total population. An increase to 2,250 computer cells would result in rather
stable distributions but also would result in computational requirements that
would eliminate most mini computers as vehicles to run such programs.

The problem of "peak wander" is relatively minor in comparison to the
engineering benefits. The ability to make a priori quantitative predictions of
transient behavior of a cell population should be a significant aid to the design
engineer. Such systems will allow the development and testing of process control
strategies and algorithms without recourse to slow and expensive experimenta-
tion. Further, the design of bioreactors in which a population undergoes transient
changes in environment (e.g. fed batch) could be expedited by such models.

As Bailey et at. (1983) have pointed out the paradigm:

molecular level control systems

single cell kinetics

microbial population dynamics

reactor productivity

is a powerful approach. Models which adopt this approach are ultimately the ones
most likely to improve the design and operation of real bioreactors.

SUMMARY

The introduction of chemical structure into models of microbial populations is
important in making accurate predictions of a population's biosynthetic
capabilities and performance, particularly under transient conditions. The intro-
duction of chemical structure into population models can result in substantial
increases in complexity. The modeler must always make the complexity of the
model fit the objectives for which the model was constructed. When a detailed
knowledge of the distribution of biosynthetic capabilities in a population or when
accurate a priori prediction of transient responses is required a population model
based on a finite-representation technique is the preferred approach. The art of
constructing chemically-structured models is young (less than two decades old).
Significant opportunities to improve such models exist.

• -
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NOMENCLATURE

A extrinsic concentration of limiting nutrient in William's model, MI._

A 2  extrinsic concentration of glucose as limiting nutrient in Shuler's model,
M/L

C, intracellular (or intrinsic) concentration of the ith species, M/L'

D extrinsic concentration of structural and genetic component in William's
model, M/L3

F- number of replication forks in Shuler's model

k, rate constant for ath process, T -'

K, saturation parameter for ith species, MIL3

K, saturation-like parameter for feedback inhibition by product, MIL 3

M total biomass in the system at time t, M

M extrinsic concentration of total biomass in William's model, MIL 3

M3  amount of DNA/cell, M

P, amount of deoxyribonucleotides per cell, M

rk rate of formation of species k-by ath process based on biotic volume,
M/L 3 , T

R extrinsic concentration of synthetic component in William's Model, MIL3

time, T

V volume of single cell in Shuler's model, L'

V volume of biomaterial per unit biomass, V/Al

X, mass of ith component per unit mass of biomaterial, MIM

Greek

(k stoichiometric coefficient, MIM

,. specific growth rate, h
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6.1 INTRODUCTION

A living cell is an immensely complex self-regulated chemical reactor which responds to envir-
onmental stimuli (such as changes in nutrient levels, temperature and pH) by altering its internal
composition and biosynthetic capabilities. Such changes are not instantaneous but reflect finite
time lags in the various biochemical pathways in the cell. Mathemaiical models that aspire to
reflect the basic nature of living organisms must recognize the dynamic nature of such organisms.

Such models are built to fulfill at least one of the following objectives: (I) discrimination
among possible mechanisms for the control of cellular processes. (2) bioreactor dcsign and opti-
mization, and (3) process control. The requirements placed on the model building process will
differ with respect to the ultimate objective of the model builder.

Typically a model which seeks to be useful in mechanism discrimination at the subcellular level
must be very general (and hence complex) and contain a low level of empiricism. Such models
must accurately reflect the basic biochemistry of the cell. A high level of detail will invariably
require large numbers of parameters; it must be realized that this does not reflect on the validity
of a model. A 1(X)-parameter model with no adjustable parameters may be intrinsically more
valid than a two-parameter model where both parameters must be adjusted. In models where
various subprocesses are self-regulated, and also regulated by the products of other subprocesses.
the overall system response may be more dependent on model structure than on the values of the
kinetic parameters associated with any individual subsystem.

Such complex models must be closely tied to experimental data to retain validity. Experiments
are required for independent parameter estimation and to provide an information base for the
formulation of hypotheses about a subcellular control system or pathway. Model predictions
incorporating the various hypotheses must be tested against experimental results. Comparison to
predictions about the dynamic behavior of the system offers a more stringent test of validity than

119
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does comparison to steady-state experiments. The process is simply that experimental evidence
suggests models which lead to testable predictions and to further experiments which lead to
refinements in the model resulting in new hypotheses and experiments, etc.

The other extreme is the formulation of models solely for process control. In this case the
model builder is restricted to variables which can be readily determined on-line. Since the
number of variables which can be reliably measured on-line is small (particularly in commercial
systems), the model builder will use much simpler models than those intended for mechanism dis-
crimination. Such models generally contain a moderate level of empiricism. particularly when
explicit measurements of the product are impossible and productivity must be correlated with
other more easily measured parameters. Consequently, models intended for process control will
be valid for a relatively narrow operating range of abiotic conditions and will have a minimal
number of parameters of which a large fraction may have to be obtained using curve-fitting pro-
cedures. The ultimate extreme would be the so-called 'black box' models.

Intermediate between these extremes are models intended to develop a more basic under-
standing of bioreactor performance or for the actual optimization of a process. GeneralitN is
important if a broad range of reactor conditions and types are to be explored and consequently
the level of empiricism which can be tolerated is low. Since emphasis is on productivity, the level
of biochemical detail required will be tied directly to the nature of the product. Models used for
optimization will be mature models already subjected to substantial experimental verification:
the results of the optimization undoubtedly require experimental validation but such an experi-
mental program would be less extensive than for either mechanism discrimination or control.

6.2 DEFINITIONS AND IMPLICATIONS

6.2.1 Balanced Growth

Campbell (1957) was probably the first to introduce the term 'balanced growth'. Hie
wrote: . . . it will be convenient to say that growth is balanced over a time interval if. during that
interval, every extensive property of the growing system increases by the same factor'. His deti-
nition was based on the behavior of a large population of cells.

Barford and coworkers (1982) have sought to broaden this definition to include the growth ot
individual cells and sustained oscillations by the culture as a whole. In this chapter we will accept
the extension of the definition to an individual cell but not to the case of sustained oscillation in a
whole culture since the average concentration of cellular components per unit cell weight would
be time dependent. Balanced growth for an individual cell requires that each division cell be an
exact replica of the previous cycle.

If a culture is in balanced growth, each individual cell need not be in balanced growth (see the
data of Powell. 1958) but on the average a 'typical' cell within the culture will fulfill the definition
of balanced growth.

6.2.2 Model Characteristics

Tsuchiya and coworkers (1966) in a pioneering review article suggested a conceptual frame-
work for classifying models of microbial cultures. This framework has been retained, although
the terminology has been modified through the years. Harder and Roels (1982) offer a well writ-
ten summary of distinctions among models.

In this chapter we will concentrate on models which are deterministic rather than probabilistic. A
deterministic model allows the exact prediction of future behavior based on specifying the current
state vector (essentially values for all variables in the model). Deterministic models become
increasingly valid as the number of individual members in the population increase. Generally a
total population greater than 10 000 is sufficient to treat the system as deterministic. Special con-
sideration must be given to synchronized or to synchronous cultures where 'all' cells initiall
divide at the same time and cell number increases in a stepwise fashion. After a few generations
asynchrony develops as the distribution of cell division times broadens. Such behavior is determi-
nistic in that with a large cell number the future time course is predictable. However, the devel-
opment of asynchrony depends upon a random or probabilistic event within a population. Models
seeking to simulate such behavior must include some mechanism to recognize such randomness.

Models are generally 'structured' or 'unstructured'. An unstructured model assumes that onl, a
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single variable such as cell number or dry weight is sufficient to describe the biosphere: in essence
only the quantity of biomass is important. A structured model allows the division of the biosphere
into two or more components. A model w hich i, chemically structured divides the biosphere into
chemical components. These components mas be real and measurable such as DNA. RNA. pro-
tein. etc. Alternatively, chemical structure may be imparted with less well-defined components
such as 'synthetic component', structural component', or similar terms. A model may be non-
chemically structured by recognizing that in a pure culture the biosphere consists of cells of differ-
ent cell sizes and ages and the biosynthetic capabilities of a cell depend on agc or size. With a
mixed-culture a non-chemicallN, structured model would recognize the existence of different spe-
cies and would consider the interactions among species. Often the term 'structured model'
implies only chemical structure. In this chapter an effort is made to recognize explicitly the two
possible forms of structure. In a structured model both quality and quantity of the biosphere are
important.

Another distinction arises due to the nature of a microbial culture: it consists of many distinct
cells. A "segregated' or 'corpuscular' model is one that explicitly recognizes that a population con-
sists of individuals each of whom may have distinct properties. A 'non-segregated' or 'distribu-
tive' or 'continuum' model does not explicitly recognize the existence of individuals but rather the
cell mass is viewed as a lumped biomass which interacts as a whole with its environment.

As long as the properties of interest can be adequately represented by averages, the non-segre-
gated approach is satisfactory. Hlowever, if properties with moments higher than first-order are
important, then the lack of recognition of the existence of individual cells can be important. For
example. suppose that 10% of the total population is responsible for 90% of the product forma-
tion. Shifts in the distribution of cell types in the population could be important. With the use ot
geneticallh engineered organisms it will be quite possible for a population to contain a wide var-
ict\ of cell types differing in gene dosages (Imanaka and Aiba, 1981 ). For such cultures some rec-
ognition of segregation in the model will be important.

'he mathematical requirements for the non-segregated and segregated models to give identical
results have been described (Harder and Roels. 1982: Ramkrishna. 1979). Essentially, the con-
tinuum approach can he derived from the segregated approach if: (1) the rate function of a
sequence of enzymatic reactions. R, can be factorized out of the probability-density function.
and (2) the properties of the cell are statistically independent. Under these conditions it can he
demonstrated that the correct formulation of chemically structured, non-segregated models
requires the use of intrinsic concentrations (e.g. mass of component i per unit mass of total bio-
material) for all biotic components. Abiotic components can be expressed as extrinsic concen-
trations (i.e. component mass per unit of reactor volume). Fredrickson (1976) was the first to
articulate this requirement based on physical considerations.

The simplest type of model is unstructured and non-segregated: the Monod equation is an
example of such a model. Fredrickson and coworkers (1971) have shown that only structured
models can possibly predict the response of a microbial culture in unbalanced growth. Thus the
Monod equation can only work under balanced growth conditions. Generally. exponential
growth in batch culture and steady-state growth in a single-stage chemostat are considered the
only common balanced growth situations. Probably neither exactly fulfills Campbell's definition
of balanced growth. Barford and coworkers (1982) cite examples of exponential growth in batch
culture which are not balanced. For a truly unstructured model to apply to steady-state chemostat
growth, cell composition would have to be the same at all dilution rates: experimental measure-
ments have shown that cell composition varies with dilution rate,

For any transient response structured models must be used. The rest of the chapter will be
devoted to models which contain sufficient structure (chemical and/or non-chemical) to be useful
in predicting the dynamic response of fermentation systems.

6.3 MODELS OF CELLS IN SUBMERGED CULTURE

6.3.1 Chemically Structured Non-segregated Models

Two of the first chemically structured models proposed were those by Williams (1967) and by
Ramkrishna et al. (1967). Both were two-component models. Williams (1967) lumped the cell
into a synthetic component (primarily RNA) and a structural-genetic component (primarily
DNA and protein). Ramkrishna et al. (1967) divided the cell into a G-mass (RNA and DNA) and
D-mass (proteins). As pointed out by Fredrickson (1976), both models are invalid since intrinsic
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Such models have proved useful but are clearly limited since the interactions among members of
the population may be essential to maintain the stability of the system.

Another form of structured but non-segregated models is obtained b dividing the total
biomass in a mixed culture into components based on species rather than on compositional
variables such as RNA, DNA, etc. Such an approach makes good sense if each species per-
forms a unique function within the population. It is not necessary that each species com-
ponent be further divided into compositional categories (although such an approach could be
very valuable): the division of the culture into species is sufficient to give the culture
.structure

A large number of models for mixed cultures exist. An excellent overview can be obtained
from articles by Fredrickson (1977, 1983), Kuenen (1983), and Bazin et al. (1983). The classili-
cation scheme offered by Fredrickson (1983) is given in Figure 1. Such interactions can give
rise to a wide variety of dynamic responses. Even when the manipulated parameters in a che-
mostat (e.g. temperature, feed concentration, flow rate. etc.) are held constant, the sxstem max
exhibit sustained oscillations. Small perturbations in flow rate or substrate levels in the teed
can cause very strong transient responses and possible destabilization of the sxstenm. Some
examples of the dynamic behavior that can be encountered in steadx-flow sxstems arc gi\en in
Figure 2.

Mixed cultures are of importance in many natural food fermentations. vaste treatment and

Hf',t ,of P'lct of
prt'"i tt( t' of ;,rtn't'c to
B ,t rosith A oin ,rotith

rat, of A rate, of R Quat ftiiti rematt rk..s \N t " If ttttrf, t (toi
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rermal of resource'

- Negative effects caused b\ ANI AGONISM
0 production of toxins or inhibitotrs AMENS/HSM

Negamec effects caused b\

+ production of 1.1ic agents. positie
effects caused b\ solubilization of
biomass

Positie effect caused h\
production h% H (host I of a

+ 0 stimulus for growth of A C(OMNM NSALISM,
(commensal) or b\ remo\at bs B
of an inhibitor for groakth of A

Sec remarks for commensalism. PROTO
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not necessary for growth of both

See remarks for commensalism.
+ + Also presence of both populations MUITLAI.SM

is necessary for growth of either

FEEDING

+ B feeds on A (includes predation
and suspension-
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The parasite (B) penetrates the
+ body of its host I A) and therein PARASItIS

converts the host's biomaterial or
activities into its own

+ A and B are in physical contact. SYMBIOSIS
(or perhaps Oi) interaction highly specific

- Competition for space CROWt)ING

Figure I Scheme of classification of binary population interactions. The ries of A and B may he re\ersed op part ol
figure is for indirect interactions, while the bottom is for direct interactions. (From Fredrickson. 1983. s ith the permission

of the American Chemical Society. Washington. W()
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Figure 2 Stability regions of a model for the prcdator-prey interactions of Dictvostelium discoideum and ELcheriit/ii (ioh
in continuous culture. The model was based on saturation kinetics. Five tpes of steady-state behavior can be predicted a,
a Iunction of combinations of holding time and concentration of the limiting nutrient (glucose in this case). The prcdiclion
ot sustained periodic oscillations was confirmed .xperimentally with good correlation between the model prediction, and

experimental data. (From Tsuchiya et al.. 1972, %kith the permission of the American Society for Microbiologp )

natural ecosystems. They also represent the case where models of dynamic behavior are essen-
tial. Models of populations in which the behavior of each component species is modelled by a
chemically structured model have not been accomplished. Such a model would have a much
greater potential of truly representing the wide variety of dynamic responses that can be obtained
with n:ixed cultures.

6.3.3 Segregated and Chemically Unstructured Models

Models which are termed segregated but chemically unstructured are based on the presump-
tion that a single variable such as cell age or cell size can completely describe the physiological
state of a cell. Thus any cell of say the same size must have the same composition and biosynthetic
capabilities. The population model has 'structure' in the sense that the biosynthetic capabilities
and composition of the population can be altered as there is a shift in the controlling variable such
as size. Such models have the potential to predict transient responses.

Ramkrishna (1979) has summarized a number of aspects of formulating segregated models and
reviewed some important aspects of previous studies, however, these models have generally had
less impact on biotechnologists working with bioreactors than structured non-segregated models
have had.

Shu's (1961) model for product formation is a possible exception. It makes use of an age den-
sity function, and product formation is tied to cell age. It is a versatile model and can reproduce
the transient profiles typical in a wide variety of fermentations. However, it is difficult to evaluate
all the necessary parameters from basic biochemical principles and the model, in practice. has a
high degree of empiricism. Such a model may be useful in bioreactor design but not in mechanism
discrimination.

As Bailey (1980) has pointed out, the development of segregated models with a significant level
of chemical structure has been impeded by the difficulties in obtaining experimental data for
model building and verification. The rapid measurement of DNA, protein and RNA (and poten-
tially others) of a single cell can be accomplished with the appropriate fluorescent stains and flow
cytometry. The availability of such measurements will undoubtedly act as an impetus to the
development of segregated models which allow cells to contain che!mical structure.
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6.3.4 Population Models Based on Single-cell Models-Segregated and Chemically Structured
Models

Models derived from the population point of view. which contain chemical structure as Aell a,,
recognize segregation. result in equations which are extremely difficult to solve. Shuler et al
(1979) described a complex model for the growth of a single cell of E. coli. It "as suggested that
population models containing chemical structure and recognizing segregation might be con-
structed from a finite-representation technique using each single-cell model to represent some
subfraction of the total population.

Nishimura and Baile\ (1980) in an important paper starting from the perspectike of a single cell
of E. coli ha\e constructed a model giving analytical solutions for the distributions of cell mass.
DNA content, chromosome configuration and total cell numbers, The model requires that the
growth rate he specified so that it responds implicitly rather than explicitl% to changes in lutri-
ents. Ihe model makes cry good predictions of the transient response of such a culture to a shift-
up in growth rates. l3ailev (1983) has reviewed the use of this general approach to the eukar\otes
Schizt:l05chom -tI.ce\s pout b' and Saccharom'ivces cerevisiat' ais well as bacteria.

Shuler and )omach ( 1983) have reviewed much of the literature concerning the de\ elopment
of models of single cells. Since the numl- ,r of molecules in a single cell is small, the use of the
normal types of kinetic expressions based on concentrations is not strictl\ allo% able. I lo\e\ er. it
the model cell is to be typical of a large number of cells (at least more than 1(j). then such kinetic
expressioins arc acceptable. Such an understanding is implicit in almost all of the singhl-cell
models des eloped.

Shuler and Domach (1983) and Domach et al. (1984) ha\e described a complex single-cell
model for L. coli (see Figure 3). Almost all of the model parameters %kcre estimated from iata in
the literature. Four parameters associated with cross-wall formation could be esaluated onls after
the model sx as run at one gro\th rate where glucose was rate-limiting. Although the model is
complex. it contains onl, four parameters adjusted within predetermined limits. Such a model
provides an ideal framewvork for the quantitative testing of the plausibility of biological mechan-
isms. Shuler and Domach (1983) use the model as a basis for testing mechanisms tor the control
of initiation otf chronosone ss\ thesis in E. coli.

A* A W"

Figure 3 An ideali,ecd sketch of the model E. coi B/rA growing in a glucose-ammonium salts medium with glucose or
,immoinii as the limiting nutrient. At ihe time shown the cell has just completed a round of DNA replication and initiated
cros,,-uall formation and a new ro~und of DNA rcplication. Solid lines indicate the flow. of maierial, while dashed lines
indicate floss> of information. The symbols arc: A1 . ammonium ion: A_.. glucose land associated compounds in the cell):
\,5. waste products I((O,. tt,() and acetatel formed from energy mctabolism during acrohic growth: P1 , amino acids: P.
ribonucleoiides" P . deosyrihonucleotides: P4. cell envelope precursors: M1 , protein (both eytoplasmic and envelope):
MI.H Si. immature 'Ntablc" RNA: M.R ii. mature "stable' RNA (r-RNA and t-RNA-assume 85% r-RNA throughout):
MM.,. messcnger RNA: !st. t)NA; M1 , non-protein part of cell envelope lassume 16.7" peptidoglycan. -76' lipid and
3,57'. polvsacchairidet: M . glycogen: PG. ppGpp; E1 , enzymes in the conversion of P, io P,; E., E,. molecules insolhed
in directing cross-wall formation and cell envelope synthesis-the approach used in the prototype model was used here
hut more recent experimental support is available: GLN. glutamine: E4 , glutamine synihetase: "indicates that the
material is, present in the external environment. (From Shuler and Domach, 1983. with the permission of the American

Chemical Society, Washington. DC)

A population model can be constructed from the single-cell model without the addition of any
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adjustable parameters IDomach. 1983: Shuler and Domach. 1983; Dornach and Shulct. 19S'4b1.
H1oss e\ er. a cause for asN nchron\ must be specified and included in the mnodcl: in this case a ran-
dom \ariation in the quantity of enzyme responsible for cross-wkall formation \\s as chosen
(Domach and Shuler. 1984a). Domach and Shuler (1984b) have described the use of such a
model for the prediction of the dsnam ic response of a population of E. colt in a singie-stae
chemostat to a shift in dilu~tion rate. A comparison of experiment to model predictions is 21\ enl InI
FiLcures 4 and 5.Recalling that no adjustable parameters were utilized in de, eloping theC popula-
tion model, the correlation of prediction with experiment is quite remarkable. Thus it atppears
possible to predict the dtinatnic response of a large fermenter based solel\ on basic biochemnistrs\
ss ithout recourse to empirical expressions. However, such models, while niathemnaticall\ st raieht -
forward. are quite tedious to develop and require substantial computer time.
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Figure 4 Sht t in predicted I ii and 'Vise r\ cc) - siz distri buttons due to aI los PCert itrha It in In a c e -t It he o' Ica
nismi modelled ", sL~iwi /it n oh BI rA at 17 C. Predic:tions A~ere made using the singtle-cell it odel depic tcd I Ii lIirtrc
a, at base Ior a poipulation ntOde using at Iic representation scheme. 225 model eellIss\% cne t~lided III th lePO pa atIt,1
schenme. a smoother predicted Wie distribution would have been obtained if more moiidel ccll hiid beet? ued, ssnmei lie-
less. the model ,ieeuratel.% predict, the time-dependent shift in cell size and gici es reastiable prim Ito the
breadth and skess% ii the siie distribution, the Initial steady-st ate distribution is shown tin (I) ju tLst I-i.ior to the deere ase it

Ibis the inal diltioin rate tit 0.91 h was ehanited to 0.05 h at time rIi (From tDomach 111d Sitilert lJ)SJAII
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Figure 5 prediction (if transient changes in substrate concentration and dimensionless cell number, t he model predic-
tion is denoted bs at solid line, while the observed values of substrate concentration and ditmensioitless Cell number arc
gisen by 0 and respeetively. The data are for the experiment described in Figure 4. The model is a population model

based tin an ensemble of single-cell models as described in Figure 3

6.3.5 Models with Time Delays

Computationally simple models that predict dynamic behavior are particularly desirable for
process control. Rather than explicitly introducing a complex kinetic network the effect,, of cell
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adaptation can be included through the use of time delays. Nominally unstructured models mo1di-
tied by inclusion of time delays are potentially promising candidates for making prcdic ions oit
dynamic behavior.

The underlying rationale for such models can be found in the concept o1 relaxation times
(Harder and Roels, 1982). The concept originated as a means of realistically describing complex
thermodynamic systems. A relaxation time characterizes the rate of adaptation of an internal
process to changes in the external or abiotic conditions. The system. the biotic phase, is then des-
cribed in terms of relaxation times and externally observable variables. The smaller the relax
ation time the more quickly the internal mechanism adapts to changes in input.

A typical cell is characterized by a large number of processes with widely varving relaxation
times, e.g. allosteric controls with relaxation times of about I s (range 10l ' to 1)2 S o evolution-
arv changes with times of 106' s or larger. Not all of these internal processes are usually of import-
ance to the prediction of the behavior of interest. If the rate of change of a variable in the abiotic
environment is slow compared to the rate of adaptation of art internal mechanism to that change,
then the dynamics of that internal mechanism may be neglected: it will alwav s be at a quasi
steady-state with respect to the external variable. In the above example the relaxation time of the
internal process is much smaller than a characteristic time associated with the external ,\sten.
On the other hand, if the relaxation time of the internal process is much larger than the extern,il
relaxation time. then that internal process can generally be ignored from a short-term \ tcPoint
such as for process control. For example, the 'normal' dynamic response of a)I apulatilon in coni-
tinuous culture to perturbations in flow are dissipated in two or three residence times hut ,uch
changes may have long-term effects in the selection of a suhpopulation of cell,, SuCh A s'lCtkll
might not become apparent for many more cell generations.

Consequently, the dynamic behavior of a system could he satisfactori' c nlntlmtd h\ ,,nl o0n-
sidering those internal processes that have the relaxation times of external chancs. I h,'.c ite' -
nal processes with smaller relaxation times can be considered to he in a qu si ,t.ad\ -stil \\ 11]hC
those processes with larger relaxation times can be ignored. or procecs control \\.' Iher the m11lo
fluctuations in the abiotic environment can be anticipated. a model rccCningIii a smi I miber iti
relaxation times may be quite adequate.

]The application of the use of transfer functions to biological s,,stems is an exaniple oI the :otn-
cept of relaxation times. An important example is the model suggested h, Youtu and Hunca'.

1973). With this model they were able to predict the transient response of a chcmostat to per-
turbations in flow- or substrate feed concentrations; parameters predicted \%'ere bioiass. suh-
strate. protein. RNA and cell number. Results that might be expected ire given in Ficure 6. The
values of the time constants could be estimated from experiments using a "black box' approach.
The application of such techniques in the field of process control is \Nell knoCn ((oughano\r
and Kopel. 1965). The essential limitations to this approach are: (I) that only predetermined
external variables are changing and at a rate consistent with the experiments to evaluate the
time constants, and (2) the transfer approach assumes a linearized system. Since biological
systems are highly non-linear, the transfer function will be valid only for rclativel\ small pertur-
bat ions.

Time delays can also be included in models based on physiological reasons rather than hlack-
box" models. Many such models have been recently reviewed by MacDonald (1982). An earl\
example i; the discussion of a linear model with discrete dela,. which was invoked by Finn and
Wilson (1953) in considering observations of sustained oscillations of a yeast population in a chc-
mostat. Others have also suggested more complicated expressions making use of not only discrete
delays but distributed delays employing a memory function. Such delays may act to approximate
the complicated relationship between cell numbers and biomass in a population, or to include the
effects of inertial nutrient pools, or to recognize that a cell's previous physiological history will
affect its dynamic response to perturbations. Important examples are models as suggested by
Powell (1969) which use a memory function to assess the influence of the history of the nutrient
concentrations experienced by the population on the population's ability to respond to pertur-
bations. Harder and Roels (1982) have described the use of Powell's model for predicting the
specific rate of product formation to specific growth rate.

Models with time delay can usefully simulate a variety of responses. The evaluation of para-
meters from 'black-box' experiments can provide workable models pertinent to the control of
real systems in terms of variables which can be readily measured. While such models are poten-
tially attractive for process control and do have a conceptual justification, they are limited to situ-
ations where the potential perturbations are known. The accuracy of the predictions depends on
the size of the perturbation of the external variable. Such models are not particularly useful in

4- . .
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Figure 6 Comparison of predictions from a model derived from a system-analysis perspective, predictions from a Monod
model, and experiment. The experimental system was a chemostat for a glucose-limited culture of Saccharomvces cerevi-
.tiae operating at a dilution rate of (.20 h '. In this particular experiment the system was perturbed with a stepwise
increase in feed glucose concentration from 1.0 and 2.1 g I '. x is biomass concentration, u is growth rate and s is substrate

concentration. (From Young and Bungay. 1973, with the permission of Biotechtnol. Bioeng. and Wiley. Neo% York)

discriminating among hypotheses of how cells function or in predicting the performance of a large
variety of bioreactor types employing the given cells.

6.4 MODELS OF CELLS IN SURFACE CULTURES

Although most commercial fermentation processes in the West make use of submerged cul-
tures, surface cultures offer potential advantages (Hesseltine. 1972). In Japan the growth of
molds on solid particles (i.e. the koji process) is important as a source of enzymes and as a first
step in the production of sake. Solid substrate fermentation has been practised successfully on a
large scale. Certain mold products. e.g. mold spores to be used as insecticides (Miller et al..
1983). require a high level of cellular differentiation and can be best obtained with solid substrate
differentiation.

Such a process would, at least at the microscopic level, be always a dynamic one and presents
some unique modelling challenges. A colony is always changing, and the system is much more
heterogeneous than in submerged culture: spatial considerations cannot be neglected, The diffi-
culties of these challenges coupled with the current low level of commercial activity with solid
substrate fermentations has resulted in little real progress in this area. Prosser (1982) has
reviewed a number of the suggested models for mold growth on solid substrates. Most models
examine a specialized aspect of colony growth such as changes in macromolecular composition
during vegetative growth. hyphal tip shape and extension, and growth of individual hyphae.
Models for colony formation on solid media exist and are adequate to predict rate of extension of
colony and branching patterns. Such models fail to address three important points: cellular differ-
entiation. product formation associated with cellular differentiation, and interaction with nutri-
ents in the solid media.

The rational design of solid substrate fermenters requires dynamic models. Such models would
ideally include explicit recognition of the abiotic environment (gas phase and solid medium) and
consider differentiation and product formation, and the interaction of colonies through the com-
petition for nutrients or excretion of metabolic byproducts. Mathematically, ordinary differential
equations describing mold growth need to be matched to partial differential equations for nutri-
ent (or extracellular byproduct) profiles within the solid media. The macroscopic reactor model
would be constructed from the models at the microscopic level.

6.5 SUMMARY

Transient responses of cell populations invariably result in unbalanced growth. Only models
that contain structure have the inherent capability of accurately modelling population dynamics.
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Structure. in the broadest sense, means that the modeller recognizes that both the quantity and
quality of the cell population determines the dynamic behavior of the population. Miodels vary
greatly in complexity and degree of empiricism. The objective that the model is to fulfill deter-
niines selection of the model. thus the modeller must be aware of the range of model types and be
able to pick a modelling approach matching the desired goal.
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A mathematical model for the molecular events controlling rephcahon ofColE I type plasmids

is descnbed. All the model parameters can e evaluated independently. The model smulate,
plasmid replication and accuratel, predicts the copy-number of-ColE I plasmids carrying a variety

I I- of regulatory mutations. The model is used to test the plausibility of hypotheses concerning the

,b r_- interactions of regulator elements involved ,, the replication apparatus. The model favorably
supports the mechanism proposed by Tomizawa and co-workers concerning the nature of RNA-
RNA interactions and that the Rom protein increases the binding between the two RNA species.
The hypothesis that the interactions of RNA 1-I1 increases the susceptibility of RNA If to the
action ofendonucleases is not a plausible mechanism. s 956 Ac01986A- Pr l-

The mechanism by which the copy-number complex serves as the substrate for RNase H
of a plasmid is regulated is of importance to which cleaves the hybridized preprimer RNA
our understanding and use of cells with re- to produce an RNA primer. RNA I binds with
combinant DNA. The plasmids containing the the complete preprimer transcript and pre-
ColE I origin of replication form a particularly vents the formation of the stable RNA-DNA
important class of plasmids as routine labo- complex which is a prerequisite for the for-
ratory tools and as key vectors for industrial mation of the primer RNA. The binding be-
applications. All of these plasmids need Esch- tween RNA I and RNA II is a second-order
erichia coli replication enzymes and do not reaction between the two RNA species, and
encode any enzymes needed for their own the inhibitor protein [referred to as either Rom
replication (e.g., Tomizawa, 1984). From the (Tomizawa, 1984) or Rop (Cesareni et al.,
practical point of view the key event in normal 1982) protein] apparently increases the rate
copy-number control is the control of initia- constant for binding between the two RNA
tion of replication. These plasmids control species (Tomizawa and Som, 1984). Three
copy-number with two inhibitors, "RNA I" hypotheses have been proposed concerning the
and a protein inhibitor, manner in which the Rom protein could in-

Our understanding of the process has been teract with RNA I and RNA Ii to influence
greatly increased by recent in vitro experiments copy-number (Cesareni et al. 1984),
of Tomizawa and colleagues (Tomizawa. Although the insights gained from these
1984; Tomizawa and Som, 1984). RNA I ap- studies are invaluable, they do not allow the
pears to inhibit the initiation of plasmid DNA a priori prediction of copy-number for a va-
replication by preventing the processing of a riety of growth conditions and for various
plasmid transcript (RNA II) to form an RNA mutations in RNA I or 11 structure. The pur-
primer for the DNA polymerase 1. The pre- pose of this paper is to describe a technique
cursor RNA transcript can hybridize with the to allow such a priori predictions as well as to
template DNA at the origin. The RNA-DNA quantitatively distinguish among potential

hypotheses for subcellular mechanisms such
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in vitro data by incorporating such parameters merase binds to the promoter of the RNA Ii
in a larger context (i.e., a whole cell) where gene and initiates its transcription; (2) The
the complex nonlinear interactions intrinsic RNA It transcription extends to the origin of
to a whole cell are explicitly allowed, replication without binding to an RNA I mol-

A base mathematical model of E. coli B/r ecule; (3) The transcript hybridizes with the
suitable for such a study has been described DNA template at the origin and is processed
(Shuler and Domach, 1983: Domach et al.. to serve as a primer for initiation.
1984: Domach and Shuler. 1984; Ataai and To assess the first criterion, the average
Shuler, 1985a, 1985b: Shuler, 1985). A model transcription rate of RNA 11 promoter
of a single cell, representative of a subtraction (Km,,,) is required. If, for example, KT, ,, is
of a microbial population, can be constructed 10 molecules/h (calculated from Cesareni el
with significant detail. The model allows ex- al., 1982), it implies that on average a new
plicit interaction of the cell with external nu- transcription of RNA II is initiated every 6
trients. Population models can be constructed min. To assess the second criterion (i.e.,
from an ensemble of single-cell models in whether any of the RNA I transcript would
which each single-cell model represents a reach the origin of replication before it binds
subfraction of the total population. The model to an RNA I molecule), we must know the
is able to make accurate predictions of both time required for the RNA polymerase to
steady-state and transient changes in cell size, reach the origin. The length of this transcript
cell composition, growth rates, the timing of is 555 nucleotides; if the rate of transcription
initiation of chromosome synthesis, and the is known, this time can be calculated. Al-
length of the C and D periods as a function of though RNA polymerase occupies about 70
external concentrations of glucose and am- nucleotides (Glass, 1982) it was assumed that
monium ions. This explicit interaction with transcription of the RNA II has to proceed
nutrient concentration allows the direct pre- about 100 nucleotides (also note that RNA I
diction of the effects of various subcellular is about 110 nucleotides long) before it can
mechanisms on overall system response-a react with an RNA I molecule to avoid steric
response that can be easily and quantitatively effects. RNA polymerase travels at a rate of
measured. The use of mathematical models to 50-80 nucleotides per second (Molin, 1976:
explore host-plasmid interactions has been Pace, 1973). Using an average value of tran-
pioneered by Lee and Bailey (1984a, 1984b, scription rate equal to 65 nucleotides per sec-
1984c) for Xdv in E. coli. The model of the ond, we calculate that the time for RNA poly-
host cell they used is less robust than the one merase to fully transcribe the RNA II gene is
used here and cannot respond explicitly to approximately 7 s [i.e. 555 - 110651.
nutrient concentrations. Fewer in vitro data For the third criteri'h Tomiza a and Itoh A
were available to use to evaluate parameters (1982) have reported that approximately half
for control of Xdv replication than are cur- of the transcripts that escape the binding with
rently available for ColE I-type plasmids. an RNA I molecule and extend to the origin

The purpose of this paper is to incorporate are capable of serving as a primer for initiation
models of potential mechanisms for control of the plasmid replication.
of plasmid replication into the base model for
E. co/i based solely on independently mea- Description of the Criteria
sured parameters. in Mathematical Terms

The Criteria for Initiation of a Round Description of the first criterion was given
of Plasmid Replication in the previous section where I/KTR ,1 is the

average time between two subsequent initia-
The following criteria have to be satisfied tions of transcription from the RNA I! pro-

for initiation of replication: (1) RNA poly- moter and this time can be estimated as 6 min.

W, 0



For the second criterion we must be able to there were 20 plasmids at that time, then
predict what fraction of RNA II transcripts RNA ll(,o would be equal to 20 molecules.
initiated would escape binding with RNA 1 in Using Eq. (2) we calculate RNA I11(.7) = 20
the 7 s from the time of initiation of RNA il X 0.2 = 4. This illustrates that out of 20 RNA
transcription. 11 transcripts initiated, only 4 of them would

Binding of RNA 11 with RNA I is a second- extend to the origin without binding with RNA
order reaction (Tomizawa, 1984). Thus, the I. From Eq. (3) the number of plasmids is ob-
rate of RNA It deactivation due to hybrid for- tained. For the example cited above, plasmid
mation is copy-number would equal to 22 (i.e., 20 X 0.5

d RNA I X 0.2 +- 20). We assumed a random mode of
( RNA If = -k,- V--- RNA If (1) plasmid replication (i.e., any plasmid at anytime has the same probability of serving as a

where k2 is the second-order binding constant replication template as have any other plas-
and VC is the cytoplasmic volume of the cell. mids).
Rearranging Eq. (1) and noting that RNA I Other modes of replication are theoretically
concentration is almost constant for the time possible (Rowand, 1969). However, if we as-
period of at (7 s), then Eq. (1) reduces to sume that a plasmid can replicate only once

A [ - RNA Rduring the cell cycle, than a model of this form
RNA .=e - *  vc.. RNA .o(2) would predict a copy number of two or less

where RNA ll(,.O) is the number of RNA 11 which is substantially less than observed ex-
transcripts initiated, RNA 114,-7) is the number perimentally or predicted with random repli-
of unbound RNA II transcripts 7 s after their cation (Ataai, 1986). The "Master Copy" hy-
initiation, and RNA I/VC is the intracellular pothesis can be easily dismissed since plasmids
RNA I concentration. Equation (2) implies of this type can exist in high numbers (Tom-
that if at any time during the cell cycle, the izawa and Som, 1984) which would require
number of plasmids in which RNA II tran- transciption rates from the RNA 11 promoter
sciption is initiated is known, and if the values which are far higher than values measured ex-
of VC and RNA I at that instant are used, perimentally (Cesareni et al.. 1982).
then we can calculate the fraction of RNA il Thus, based on the comparison of model
molecules which would eytend to the origin predictions for plasmid copy-number to ex-
without binding with RNA I. periment, the random mode of replication ap-

For the third criterion, almost half of the pears to be the only workable hypothesis. Ba-
RNA 1I transcripts which passes the origin of zaral and Helinski (1970) have previously pre-
replication without binding with RNA I will sented experimental evidence in support of
not hybridize with the DNA template at the random replication for plasmids with ColE I
origin or lead to a replication event (Tomizawa origins of replication.
and Itoh, 1982). The number ofplasmids (PL) Cell growth continues throughout the cell
after the initiation of transcription of RNA II cycle. After 6 min another round of transcrip-
is obtained from the equation tion from the RNA II promoter is initiated.

The same procedure is repeated until the cell
PL, = PL,_ 0. 5 e-kZRNAi/VC'A+ PL,-, (3) divides. This step-wise calculation procedure

The subscripts t - I and I indicate the values is more computationaly convenient than al-
of PL before and after the latest round of plas- lowing random binding of RNA polymerase
mid replication, respectively. For example, if to the RNA 11 promoter. Since the time in-
the value of the term terval between rounds of initiation of tran-

RNA l/VC 7 scription at the RNA 1i promoter is small
compared to the letigth of the division cycle,

is equal to 0.2 at a time that transcription from this procedure should be a good analogy of the
RNA i promoters has been initiated; and if more realistic mode of random RNA 11 ini-
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tiation. At division, equal partitioning of plas- The amount of the Rom protein made in the
mids is assumed. cell is calculated from

We could easily incorporate into our ct I d
model any distribution function for the un- - Rom
even partition of the plasmids between the di
daughter cells. This has not yet been done to ( LI ) dMI
avoid further computational complexity as- -PL- 4.0X 10-'-- i - - (7)
sociated with building population models

consisting ofan ensemble of single-model cells where NI I is the amount of chromosomally
with different plasmid copy numbers and in encoded protein, M3 is the DNA content of
turn with different growth rates. Also, we have the cell, and 4.0 X 108 is the mass of a
assumed that plasmid DNA replication is pBR322 plasmid in grams. In Eq. 7 the rate
nearly instantaneous. This assumption is based of Rom protein synthesis is assumed to be
on the observations that the DNA content of proportional to the rate ofchromosomally en-
pBR322 is 4.3 kb. Using an average replication coded proten synthesis, multiplied by the ratio
rate for chromosomal DNA and noting that of the plasmid DNA to the chromosomal
the plasmid replication is unidirectional, it can DNA. This equation presumes that the level
be calculated that the time it takes to replicate of RNA polymerase is not rate limiting. The
the plasmid DNA is about 10 s. proportionality constant for the Rom pro-

moter strength, 0, is obtained from the intra-
Model Formulation cellular concentration of the Rom protein in

To implement the above criteria we need L. coli cells carrying incl2rom', and inc9rom-

to be able to-predict the amounts of RNA 1, mutant plasmids (Tomizawa and Som, 1984).

RNA fl, etc. that are available. The binding The enhancement in the binding constant

between RNA I and RNA II can be de- between the two RNA species caused by Rom

scribed as protein (a), is obtained from

RNA I + RNA 11 Hybrid C- Rom/VC(8
Rom/VC + KRgo,, '  (8)

= inactive complex. (4) where a' and KRo. denote the maximum en-

Since k_2 is much smaller than k 2, (Tomizawa, hancement in the binding constant in the
1985) the reaction is essentially irreversible, presence of excess Rom protein, and the sat-)the uration constant for Rom, respectively. Then.

nk, = k- ( I + a) where k, and k', represent the
dRNA I = KTRNAI PL RNA I binding constant between the RNA species in
dt the presence and absence of excess Rom pro-

X RNA II- kd,"lAl RNAI (5) tein. The values of the model parameters are
given in Table I. The evaluation and justifi-

where KT,,Aand kd,,.,, are the average tran- cation of these values follows.
scription and the degradation rate of RNA I.
The first term in Eq. (5) is the rate of formation
of RNA I. The second term is the rate of deac- Evaluations of the Model Parameters
tivation by forming a complex with RNA 11, The degradation rates for RNA I and RNA
and the last term is the rate of degradation. II are assumed to be the same as that for a
Similarly, typical mRNA. The second-order rate con-

d RNAI stants for binding of RNA I to RNA II
dRNA If Kt . PL -k, - VC (k2, k) are those reported by Tomizawa (1984)

and Tomizawa and Som (1984) which were

X RNA II - kd.,,,,- RNA II. (6) obtained from in vitro experiments. Their

• ~ ~ ~ ~ ~ p WON --- .nnnnmaal n m iu



TABLE I the plasmids. The amount of energy consumed

PAAMEMTER VALUES FOR MODEL for transcription and translation of the plasmid
OF ColEI REPLICATION genes is estimated to be the same per bond as

for transcription and translation from the
Parameter Value chromosome.

The rate equations for the change in amount
- 63 rof precursors (amino acids, nbonLcleotides,
ee63 .anspts/h promoter deoxvribonucleotides) in the host cell model

k. k'. s eeTable 2

iare correctcd to include the amount of these
precursors used for ormatiton of the plasmidO X it-6  pr DNA. A separate equation describes the

t 0.5 amount of proteins synthesized from the plas-
0024 mid genes. the rate of tormation of plasmid

cncoded proteins is assumed to be propor-
tional to the rate of chromosomal protein syn-

measurements were made at 25°C and our thesis based on the ratio of plasmid to chro-

simulation is for 37°C. We used a general rule mosomal DNA. The rate equation for mRNA
(Q10) for the ArThenius temperature depen- formed is modified to include the amount of
dence of binding constants, which effectively prns All of the iecnw h c

results in doubling of the binding rate from proteins. All of these interactions which occur

25 to 37*C. KR0 ,, was calculated from the plot between the host cell and the plasmids do not

of enhancement in binding rate of RNA I affect substantially the host biosysnthesis ma-
RNA !1 versus Rom protein concentration chinery or growth rate of cells carrying low
(Tomizawa and Som, 1984). The average copy-number plasmids. These interactions
transcription rate for RNA I and RNA II pro- become important when considering recoi-

moters were estimated using the data reported binant plasmids carrying st-ong promoters or

by Cesareni et al. (1984) where they fused the for simulation of high copy-number plasmid
f3-galactosidase structural gene to the promoter mutants. Proteins made in large amounts

of RNA l and RNA 11 genes. These genes were would cause significant competition for en-

carried by phages and were integrated into the zymes involved in transcription, translation,
chromosome at a ratio of one-to-one. The ac- and replication and for precursors and energy.
tivity of 3-galactosidase expressed from RNA The required changes in the computer pro-
I and RNA If promoters was 450, and 65 units gram are detailed by Ataai (1986).

as defined by Miller (1972). These units ofac-
tivity can be correlated to the corresponding RESULTS AND DISCUSSIONS .
values of the number of 16-galactosidase reel- 'q --ON
vlues/fchel nuombr hichthaagetoasption- Model predictions of the copy-number of
ecules/cell from which the average transciption cells carrying different plasmids with a ColE I
rate of these promoters has been estimated. origin of replication are compared in Table 2
The calculated values of KT,,.andKTN,., to the reported experimental values (Tomi-
were 63 and 10 transcripts/h-promoter, re- &f
spectively. zawa and Sam, 19841,odel predictions coin- C

pare well with the experiment. Particularly p
Plasmid-Host Interactions important is the model prediction of decreasein the copy-number as a result of enhancement

The host is the glucose-limited aerobic single of the binding constant due to the Rom pro- , "

cell model of E. coli B/r (Domach et al.. 1984). tein. It should be noted that the simulation is
The plasmid contains a CoIE I origin of rep- for-cells growing in glucose-minimal salt media
lication. The host biosynthesis machinery is at the maximum growth rate (i.e., A = 0.94
used to transcribe and translate the genes of h-'), and the experimental results (Tomizawa t - -[

tEi
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TABLE 2

COMPARiSON OF MODEL PREmCnONS TO EXPERIMENT FOR VARIOUS COPY-NuMBER MUTANTS

kz,k Model predictions Experiment

RNA's binding constant
(ml) loll Copy- Copy-

Strain Rom number Decreases number Decreases

pN204 88 23 2.3 30 3.0
pN r205 173 4 10 10

pN212 17 - 125 6.2 200 6.7
pNr214 96 4 20 30

pNfS2 29 - 60 2.9 60
pNT-3i8 92 21 20 3

pNT73 42 - 43 1.6 40 2.0

pNT319' 66 + 28 20

pNT59 35 - 54 2.2 50 2.5

pN T317 78 + 25 20

Tomizawa and Som (1984).
Mislabeied in original paper as pNT3 18 (J. Tomizawa, personal communication).

and Som, 1984) are for growth in LB medium dicate only slight variation in copy-number
at 32°C. Although these two growth situations with growth rate for growth rates in the range
are quite distinct, the overall growth rate is of 0.3 to 1.0 h'. The model simulations as-
similar (ca. u = 1 h'). Also, both our exper- sume that the transcription rates for RNA II
imental results and the model predictions in- and RNA I are not dependent on growth rate.

Changes in transcription rate of RNA I and
tool RNA 1I with growth rate could lead to stronger

variation of copy-number with growth rate. In
so Fig. I we display the predicted copy-number

as function of the ratio of transcription rates
for RNA I to RNA II. A family of curves is

4generated as a function of RNA I promoter
--. ---- ------- strength. Runaway replication occurs if7K.AG TIA,,. Thus differential changes in

KTI nd KT... with growth rate could
S. , change copy-number significantly and even if

__,_ the ratio of KTA. ,/KT1 ., is maintained at 6.3
a decrease in overall transcription rate with a

FPG. I. Effect of variation of RNA l and RNA 11 pro- decrease in growth rate could lead to an in-
moters strength on plasmid copy-number. The binding crease in copy-nuritber. Other factors have

' constant between the two RNAs is 84 1IO' (cc/molecule- been tested for the sensitivity of the model pa-
I 0 h). The degr ad a t io n ra te o f R N A ILA is 2

1
h -

'. Lines rameters. Slight variations in assumptions
1, 2, 3, and 4 coretpond to K,. equal to 45, 90. 180. about the frequency of initiation from the t :

and 360 transcnptsh-promoter. respectively. The a RNA-DNA ft
between the dashed lines correspond to the experimental
value of plasmid oopy-number where ±20% error in the ber predictions g&eatly (22 copies for f= 0.4
reported value is assumed, and 28 for f= 0.6 while the value of 0.5 used

-353,l 'ft WP);G



in Eq. (3) results in a copy-number of 23). If However, for the second hypothesis, the model
we assume that changes in RNA structure alter was used to calculate the fraction of RNA 11
susceptibility to degradation by nucleases, then transcripts of the wild-type plasmid with rom-
fairly significant changes in copy-number will mutations which would bind with RNA I at
be predicted (e.g., about 10 at kd,.A, position 220 downstream from the initiation

10.5 h', 23 at 21 h-', and 85 at 42 h-1). point of RNA If transcripts. It was found that
The simulation results in Fig. I pr( iide in- 28% of the precursors initiated would have re-

formation on the ratio of RNA I and RNA II acted with RNA 1. This result is cosc to the
transcription rates (> I to prevent runaway 20 value observed by Lcatena et al (I984)_
replication and - about 2 to minimize liuc- Ihus, either hypothesis I or 2 is in quantitative
tuations in plasmid number in cell popula- agreement with the expenmental observations.
tions). Even with no prior experimentad inca- Ilowever, the model suggests that for the sec-
surements one can use modeling techniques ond hypothesis to be plausible a potential ter-
to place bounds on expenmental results. Fur- initation site must exist at a position 365 or
ther, the simulation results provide a basis to further downstream from the initiation of
predict how plasmid copy-number might be RNA II transcription. If the termination site
affected if either RNA I or RNA 11 transcrip- at 220 bp found (Lacatena et al., 1984) is the
tion rates were altered by mutation or if pro- only site, then it is highly unlikely that the
moters for these two transcripts were replaced second hypothesis is correct. This concept is
by promoters of altered strength, deduced from the simulation results presentcd

Since the details of molecular events in- in Table 3, if the last termination site before
volved in the control of replication are incor- the onrin is at the position 365 bp or upstream
porated into the formulation of the initiation of that value, the predicted plasmid copy-
criteria, and all the model parameters are ob- number would be too high to be plausible.
tained independently, we believe this model Similar dependence of copy-number on the
can be used to test hypotheses about the in- position of termination is predicted if the rom
teractions of regulatory elements involved in gene is active.
the replication control. As is evident from Ta- To investigate the plausibility of the third
ble 2, the model is consistent with the finding hypothesis, Eq. (3) was replaced with the
of Tomizawa and Som (1984) that the Rom equation
protein increases the binding constant between PL, = PL,-, + 0.5- e - rN' t/\C

the two RNA species.
Cesareni et al. (1984) proposed three hy- X PL, ,- 0.5 .h'.brid l-L, 1 (9)

potheses concerning the ways in which Rom
protein could interact with the two RNA spe- TABL- 3

cies and control copy-number: (I) The inter- PtLASMN Copy NIMBEA VS iHE POsMItoNO"F

action changes the secondary structure of ItYPot-tItcAL STRONG( TtRMiNAIORs

RNA II such that it cannot bind to the DNA oF RNA 1-It COMPIFEx

template at the origin. (2) The interactions Position of terminator site from the
cause premature termination of RNA II tran- point of initiation of RNA It Pasmid,

scripts and that a potential site for termination transcription ('oriy-numhcr'
exists at a position 220 nucleotides down- 545 23
stream of the promoter of RNA If gene and 495 31
20% of transcripts terminate at that point, or 430 38
(3) Interactions between the RNA's species 365 50
increase the susceptibility of RNA i to the 30o 65

220 90
ribonucleases. The first hypothesis serves as 220 _90

the basis for the model, and the results (Table 'The plasmid copy-number measured expenmentally

2) support the plausibility of this hypothesis. is 3o.
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where the hybrid denotes RNA I-RNA 1I plasmid replication, as well as suggesting the
complex. The last term represents the fraction conditions under which a hypothesis is plau-
of hybrid which is not degraded by endonu- sible, clearly demonstrates the need for con-
cleases. Equation (9) assumes that either free structing mathematical models which are
RNA II or the undegraded RNA 1I complex based on the sequence of molecular events
can hybridize with the origin and form primer, which are thought to take place. It should be

The portion of undegraded hybrid is ob- noted that this type of model is also essential
tained by writing a material balance for the in investigating the problem of genetic stability
hybrid: and finding the optimum bioreactor configu-

d RNA I ration for maximum production of proteins
-,thybrid = k," VC-- RNA II coded by plasmids.

-kj,,,,, hybrid. (10) ACKNOWLEDGMENT
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ABSTRACT

The design of bioreactors for genetically modified bacterial cultures

would benefit from predictive models. Of particular importance is the

interaction of the external environment, cell physiology, and control of

plasmid copy-number. We have recently developed a model based on the

molecular mechanisms for control of replication of ColE] type plasmids.

The inclusion of the plasmid model into a single-cell Ecoh model allows the

explicit prediction of the interaction of cell physiology and plasmid-

encoded functions. The model predictions of the copy number of plasmids

with the ColEI origin of replication carrying a variety of regulatory muta-

tions is very close to that observed experimentally.

All of the model parameters for plasmid replication control can be

obtained independently and no adjustable parameters are needed for the

plasmid model. In this paper we discuss the model's use in predicting the

effect of operating conditions on production of a protein from a plasmid

encoded gene and the stability of the recombinant cells in a continuous

cu I ture.



INTRODUCTION

The ability to manipulate DNA in vitro and then reintroduce the modified

DNA into new hosts has greatly expanded the potential role of biological

processing. The preferred organism for genetic manipulation is Escherichiacoh

due principally to the wealth of basic knowledge on Ecoli genetics and

physiology. Techniques to introduce new genes into Ecoli usin plasmid

vectors and transformation are now routine [i.

Plasmid shedding is a potential hurdle to large-scale processes with

recombinant organisms. Several experimental studies have documented

plasmid instability [2-6]. Theoretical studies [7,8] have shown that even

for batch fermentation on a large-scale those cells losing the plasmid can

outgrow the plasmid containing cells leading to a non-productive culture.

Intuitively one might expect that the "metabolic burden" placed on a

cell containing a plasmid would reduce a cell's growth rate, particularly

in an energy-limited environment when a high-copy-number plasmid is present

and plasmid-encoded genes are actively being transcribing. Such intuitive

guesses seem to be born out by most experiments [3,5-61. However, the

problem of "metabolic burden" is coupled to problems of plasmid

partitioning and stability (e.g. the par locus - 9-13).

One important question is whether this "metabolic burden" is

sufficient to predict the growth advantage of revertants over plasmid-

containing cells.

The above question is susceptible to analysis u~ing mathematical

models. That a need for such models exists and that such models can be

formulated is particularly evident in the pioneering papers of Lee & Bailey

[14-161 where a model incorporating a mechanism for the control of Xdv

replication has been formulated.
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However, that model is limited by the simplifying assumptions involved

in the interaction of the kinetic expressions for plasmid replication and

gene expression with host cell functions.. The host cell functions do not

respond explicitly to changes in the external environment such as concen-

tration of a limiting-nutrient. Thus the model is restricted to the range

of growth rates used to establish the empirical expressions and would

likely fail under transient growth conditions where substrate concentra-

tions and growth rate become decoupled. Another potential weakness is that

this model assumes that the host cell functions are not altered by inter-

actions with the replication of plasmids and expression of r-protein

synthesis.

We have developed detailed models of Ecoli B/r-A {17-211 which could

serve as a basis to predict explicitly the effects of plasmid insertion on

cell physiology and the interaction of the external environment with the

plasmid-containing cell. We have recently extended the single-cell model

to include a mechanism of plasmid replication for plasmids using the ColEl

origin of replication 1221. The plasmid pBR322 and its variations use this

origin of replication and have proved to be particularly useful vectors in

practical systems. Such plasmids use E.coli enzymes for replication. Recent

articles summarize the details of replication (see 23-33). From the

modeling point of view the critical event is the control of initiation of

replication. The plasmids control copy-number with two inhibitors: "RNA

IP and a small plasmid encoded protein. RNA I acts directly as an

inhibitor. A second RNA species, RNA I, is transcribed 550 base pairs up-

stream of the origin of replication towards the origin and ultimately

serves as a primer to initiate plasmid synthesis.

m m n u mmnmmmlm • I 
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The process is thought to occur as follows: some of the RNA II

hybridizes with the template DNA at the origin; the RNA-DNA complex then

can serve as the substrate for RNase H, which is thought to cleave the RNA-

DNA complex to produce the RNA primer 1291. Under normal conditions the

formation of the primer is the rate-controlling step in plasmid replica-

tion. RNA I interacts with RNA II during its transcription and prevents

the formation of the stable RNA-DNA hybrid which is a prerequisite for the

formation of an RNA primer 128,34).

The binding between RNA I and RNA It is a second order reaction. A

protein inhibitor has been isolated 135-361. It now appears that the

inhibitor protein (Rom protein) increases the rate constant for binding

between the two RNA species [30-311.

Equations which are used to simulate plasmid replication are detailed

elsewhere 1221 and are summarized in Table 1. The criteria for initiation

are summarized in mathematical form in Table 2. The values of the para-

meters used are given in Table 3 and are justified in reference 22. All of

the model parameters were obtained independently (principally from invitro

experiments) and were used without adjustment. Definitions of these para-

meters are provided in the nomenclature section.

The purpose of this paper is to explore how cellular dynamics are

altered when this plasmid model is inserted into the framework of a highly

structured E colh cell model alters cellular dynamics. In particular we

wish to predict the effects of a plasmid induced "metabolic burden" on

cellular growth rates, genetic stability in a glucose-limited chemostat,

and productivity for production of plasmid-encoded proteins.

IA
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MATERIALS AND METHODS

A. Simulation

The host is the glucose-limited aerobic single-cell model of E colh B/r.

The plasmid is pBR322. The host biosynthetic machinery is used to

transcribe and translate the genes of plasmids. The amount of energy

consumed for transcription and translation of the plasmid genes is assumed

to be similar to that for transcription and translation from the chromo-

some.

The rate equations for the precursors (amino acids, ribonucleotides,

deoxyribonucleotides) in the host cell-model are corrected to include the

amount of these precursors used for formation of the plasmid DNA or plasmid

encoded products. The equations for the base model are given elsewhere

117-181. The Appendix lists only those equations modified from the base

model to account for host-plasmid interactions and a separate equation

which describes the amount of proteins synthesized by the plasmid genes.

The proteins encoded by the plasmid genes, as a first estimate, are assumed

to be transcribed at a rate proportional to the rate of protein synthesized

from chromosomal DNA. The rate equation for mRNA formed is modified to

include the amount of mRNA formed in synthesis of the plasmid proteins. A

Runge-Kutta predictor-corrector method is used to solve the set of non-

linear ordinary differential equations.

B. Experimental

To test the model predictions a series of continuous culture experi-

ments using a transformant of Ecolt B/r containing either plasmid pBR322 or

p17 were performed. Since plasmids pBR322 and p17 both are derivatives of

ColEI plasmids, use of p17 and pBR322 transformants of E colt B/r allows

Ib
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direct comparison between the model predictions and experiments concerning

the effect of growth rate on plasmid stability and content.

Host: E colt B/r (ATCC 12407)

Plasmids:

The plasmid p17 is a derivative of pBR322 modified by placement of tac

promoter 1371 upstream of the normal B-lactamase gene. The tac promoter of

p17 appears to contain a mutation of the original tac promoter. The tac

promoter is a fusion of the lac and trp promoters and can be induced by

IPTG [371 which leads to the overproduction of B-lactamase. The plasmid

p17 was a gift from Professor D.B. Wilson (Cornell University). Since the

frequency of direct transformation into wild type B-strains of E coi is very

low, the plasmids were first transformed into E-coh WA837 which is

restriction- and methylase +. The plasmid isolated from this strain was

used to transform E coh B/r using the standard method described by Maniatis,

etal. 11M. Since isolated plasmids from WA837 are methylated in the same

manner as Ecot methylates its chromosome, these plasmids are protected from

E co B restriction endonucleases. The fraction of plasmid-containing cells

(stability) was determined by counting the colonies formed in plates with

and without ampicilin. The ampicilin concentration of the plates was 40

ug/ml. Each measurement is the average count of 3 to 5 plates using 50-100

V] of sample (3 plates with 100 pl, I with 75 and 1 with 50 Il). The

plates with too few ((20), or too many () 300), colonies were not counted.
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Medium:

The medium was: 0.03 g, CaC 2 ; 0.01 g, MnS0 4 ; 3 g, K 2HP04; 1.5 g,

KH2 P04; 1.25 g, (NH4)2S0; 0.10 g, MgS04"7H2O; 10 mg, NaC1; 1.0 mg,

FeS0 4 "7H20; 37.2 mg, Na 2EDTA, 7H20; and 1.0 g glucose in one liter of

distilled water. pH was 6.9 ± 0.1. All chemicals were reagent grade.

B-lactamase assay:

\ssays of 3-lactamase activity were performed in 50 mM phosphate

buffer at pil 7 by using penicilin G (Sigma, St. Louis, MO) as substrate

and monitoring the rate of decrease in the absorbance at 240 nm [37].

A unit of activity was defined as I V mole of penicilin G consumed per

minute at 25°C.

Continuous culture:

The Bioflo model C-30 (New Brunswick Sci. Co., New Brunswick, NJ)

with a working volume of 330 ml was used as a chemostat. The culture

medium was introduced through an inlet on top of the vessel. The spent

medium with cells was removed through a vented graduated cylinder

equipped with a valve, and then to an overflow jar. The flow rate was

determined by measuring the time required for the graduated cylinder to

be filled with 200 ml of medium. The temperature of the chemostat was

maintained at 37'C (± 0.5)

RESULTS AND DISCUSSION

The ability of the model to predict copy-number in Ecolh cells carrying

different ColEl regulatory mutant plasmids have been compared previously to

the experimental values reported by Tomizawa and .Som 1301 (see reference
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1221). Comparison of model predictions with the experimental values showed

an excellent agreement. For example, the model predicts a copy number of

23 with wild-type plasmids when the gene for the production of the Rom

protein has been inactivated and 10 in the presence of the Rom protein.

The reported experimental values were 30 and 10 respectively. The binding

constants were measured at 25'C (311; our simulation results are for cells

growing at 37'C. We assumed an Arrhenius temperature dependence of rate

constants which effectively results in a doubling of the binding rate from

25°C to 37'C. Since the details of molecular events involved in control of

replication were incorporated into the formulation of the replication

mechanism and initiation criteria, and that all the model parameters were

obtained independently, the model can be used to test hypotheses about the

interactions of regulatory elements involved in the replication control

[22].

In Table 4 the dependence of plasmid DNA content on growth rate is

shown. As is evident from the simulation results of Table 4, the plasmid

DNA content per gram dry weight of cell increases as the growth rate

decreases. The increase is due primarily to a decrease in average cell

size rather than a change in copy-number. The plasmid copy-number varia-

tion over a wide range of growth rate was not significant. The increase in

plasmid DNA content with a decrease in growth rate is in agreement with the

experimental observation of Siegel and Ryu for the plasmid pPLC-23-trp Al

1391. However, they also reported a significant variation of plasmid copy-

number with growth rate. In another report experimental measurements of

pLpll plasmid copy-number have shown a plasmid copy-number that is nearly

independent of the dilution rate and consequently growth rate (401.
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Our measurements of B-lactamase activity (a plasmid coded protein) of

E. coli B/r/pBR322 host-vector system over a significant range of growth rates

are shown in Figure 1. It has been shown that B-lactamase activity and

plasmid copy-number are linearly related for plasmids of this type at low

to moderate copy number 1411. Thus copy number appears to be independent

of the dilution rate for this culture for dilution rates of 0.18 h-1 to

0.7 h0. The model prediction of fairly constant copy-number is based on

the assumption that transcription rates of RNA I and RNA 1I are constant.

If transcription rates of RNA I and RNA If vary with growth rate, then copy

number will change significantly at low growth rates. However, for either

assumption copy-number is nearly constant for dilution rates greater than

0.3 h0. Copy number would also change significantly if the ratio of RNA I

to RNA II varied 1221. At very low growth rates copy number might well

increase.

The productivity of plasmid encoded protein synthesis can be predicted

using the model. Since copy-number is relatively independent of growth, we

find that the assumption that plasmid-encoded protein synthesis is a

constant fraction of total protein synthesis results in optimal operation

at nearly the same operating ccnditions as those that maximize biomass

productivity (see Table 5). Under such circumstances the optimization

problem is simple, and the plasmid protein product can be treated as a

primary product as long as the plasmid is stably maintained in the culture.

Such dependence of productivity on growth rate has been reported 140,421.

However, a more interesting case is obtained if the plasmid gene is

transcribed at a fixed rate ("constitutively") independent of growth rate.

Table 6 details the results of such a calculation assuming a transcription

rate of 50 transcripts/h-promoter for the plasmid encoded gene. Under such



-9-

circumstances the optimal operation conditions are at intermediate dilution

rates and product formation can no longer be treated as simply growth

associated. The optimum operating conditions depend on promoter strength

which can be treated as an independent variable as well as on the para-

meters (length of cell cycle, cell size, and cell yield) dependent on

growth rate. As long as the competition for RNA polymerase or for

precursors is not too severe, the assumption of a relatively constant

transcription rate from a sLrong promoter is quite reasonable. However, if

we wish to consider effects of even lower growth rates (( 0.25 hr-1 ) on

plasmid encoded protein production, then the possibility of increasing copy

number and its effect on protein productivity would need to be considered.

In this productivity calculation we assumed that all of the cells

retain their plasmids (i.e. 100% stability). However, cells may lose their

plasmids, either through uneven partitioning or physical instability. To

find the optimum operational conditions for the maximum productivity of

plasmid encoded proteins, the stability of the culture has to be con-

sidered. In Table 7 the plasmid stability in a continuous culture of E cob

containing the plasmid pBR322rom- (copy-number ca. 23 is shown). It is

assumed that the plasmid gene is fused to different efficient promoters

which result in high levels of plasmid-encoded protein. The fraction of

the population with the plasmid after m generations was calculated from an

equation derived by Seo and Bailey 1431:

1

0(1 -rj) I _ 20 (6)
I+ It_-

(I -O)( 2 -r) 1I-)'

where n=(2-0)/a, a is the ratio of single-cell growth rate of the plasmid

free cells to that of the plasmid-containing cell, and 0 is the probability

-A
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of the plasmid loss. The value of a was calculated directly from the

growth rate of the single-cell model with and without plasmids. Note that

the use of single-cell models allows direct calculation of ct rather than

the indirect method that Seo and Bailey 1431 were forced to adopt. 8 was

calculated from the equation: 8 = 21-n where n is the plasmid copy-number

[40). The simulation results of Table 7 show that the cells at a higher

growth rate (0.94 h-I) are slightly more stable than those at a lower

growth rate (0.39 h-1). In these calculations it is assumed that the

plasmid instability is only due to uneven partitioning of the plasmids at

birth.

Figures 2 and 3 show the experimental results and model prediction of

plasmid stability of E coli/B/r/p17 host-vector system in continuous culture

at two different dilution rates (0.7 and 0.27 h-1). These cells have the

rom gene and copy-number is reduced; consequently the predicted stability

is reduced from that predicted in Table 7 for cells which are rom-" The

experimental results are for two identical chemostats which were inoculated

with the Ecoli/B/r/p17 grown in batch in a shake flask. To increase

stability during batch growth 70 ig/ml ampicillin was added to both

chemostats at the time of inoculation.

Comparing the experimental results in Figures 2 and 3 indicates that

the culture is slightly more stable at the higher growth rate (0.7h),

which is in accord with the model prediction. Equation (6) was used in the

stability calculation. Use of this equation requires tKe values of two

parameters, a and 6. a was calculated assuming that plasmid coded proteins

are 15% of the chromosomal proteins. This value was calculated based on

the activity of B-lactamase, which for cells grown at a dilution rate equal

to 0.2h h0, was 37 units/ml. Since 3500 units of activity correspond to I

A ....
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mg of B-lactamase, and 0600= 1.4 approximately yields 150 pg protein 1441

(00600 of our culture was 1.1), it can be calculated that about 10% of the

cell protein is B-lactamase. The B-lactamase gene in p17 is placed down-

stream of the modified tac promoter, which is controlled in nearly the same

manner as the lac promoter. Because of this, the lac IQ gene product is

unable to repress the B-lactamase or B-galactosidase gene. This was con-

firmed by our batch experiments with E coli/B/r/pl7 in the presence and

absence of IPTG. B-lactamase activity in the culture with IPTG was about

26 units/ml, 10% more than that in the absence of IPTG (26 units vs. 24).

We also did batch experiments with E coli/pSKS104. pSKS104 is a pBR322

derivative with insertion of the lac operon in the tetracycline gene of

pBR322. The B-galactosidase activity in the culture with and without IPTG

was 6900 and 5800 units, respectively. This observation indicates that the

presence of plasmid p17 causes expression of lac operon at nearly the fully

induced level. B-galactosidase in induced cultures constitutes about 5% of

the cell protein (451. Although B-galactosidase is a chromosomal gene, it

is only produced in large amounts in cells with plasmids, which means that

in plasmid carrying cells synthesis of about 15% of the cell protein (10%

B-lactamase, and 5% B-galactosidase) is due to the presence of plasmids. e

was calculated from the predicted number of plasmids predicted by the model

for each growth rate (12 at 0 = 0.7 h0, and 11 at D = 0.3 h-1)

Perretti and Bailey 1461 have recently extended our base model 117,181

to include more details on control of transcription and translation. This

detail will likely become important to predictions of productivity and

stability at high levels of expression of plasmid encoded proteins where

the availability of RNA polymerase or other key enzymes may become

limiting. The model described in this paper which details control of

-A
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pldsmid number could be integrated with the extended single-(ell model

developed by Perretti and Bailey 1461.

CONCLUSIONS

We have developeI a moleculdr model for replicat ion L.ortrol of

plasmids containing ColE1 o:-ilin of replication. The model (;<erlv

illustrates the use of a moletsular ipproin in formulatino mu(:els from the

biological mechanisms. Since jl I the model piraimeters 4ere cmtainel

independently, the model should prove useful to niologists, to elucidate

the nature of interactions involved in the rejulation ot plasmid copy-

number, as well as to engineers, to evaluate the optimum operational

conditions for maximum productivity of bioreactors for genetically modified

microorganisms. The inclusion of the plasmid model into the highly

structured single-cell model allows the prediction of the stability of a

recombinant culture under different growth conditions. We believe that

this model is the first to be able to make such predictions using only

input data on substrate concentration.
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NOMENCLATURE

TRNA ITranscription rate of RNA I promoter

KT Transcription rate of RNA II promoter t-I
RNaa II

kdRNAI Degradation rate of RNA I

kd Degradation rate of RNA 11RNA I

k2  Second order rate constant bet_'-een the RNA's species

K Ro The saturation constant for Rom protein

f Binding frequency of RNAII transcript with DNA tem-
plate at the origin

M1 Protein content of a single-cell

M3 Chromosomal DNA

RNAI, RNAII Number of RNAI and RNAII molecules per cell, respec-
tively

Roa N4umber of Rom molecules per cell

VC Cytoplasmic volune

a Enhancement in the binding constant caused by Rom
protein

cO' Maximum enhancement in the bin:]iiw, constant in the

presence of excess Rom protein

The proportionality const ant
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APPENDIX

Equations Changed in Base Model (Ref. 18) to Account for

Resource Flow to Plasmid and Plasmid Protein Synthesis

6dATP) (A-)+ _) + 6 ( ) + 6 (d4) + 6 (_1_1)
d, A2 dt P 1 dt S P2 dt S P4 dt S M 5 dt

+ (dM) dMPL) dM2RTI) dM2M)(dM3 (dM4)

+ 6 ( ') + dMP) + 6 1(dMR~ + 2\ + 6+ 6 (~L
ml dt S dt M2

1  dt S dt S1 M3 dt M~dt S

+ 6 (dPG) + 6 (d ) (3)
PG dt S v dt

dMPL.
where is the rate of protein synthesized from plasmid genes.

dt

(dP) = kl( Kp 1 Ai/V A 2 /V
+ P K/V K PIA 2 + A2/V

dt K1  P1A KP + F2 /
- k 1 - Y1 (d-)- E2 (d2) + Y2 + dP3

TP 1 K + A2 /V dt dt dt dt

+ C3 Y 3 (d + dPLDNA . - (4 + Y4 li) . (8)
dt dt dt dt

where is the rate of plasmid DNA synthesis.

dt

_ !m.4'



P-2k 2  PI/V+ A2/V
dt K P + P2 /V K 2P + P2/V K PA2+A/

-k ______dM2RTI dM2RTM &1

TP2 K TP2 + A2/V dt dt D dt

- + y3 ( !3 + dLDNA))(9
dt dt dt

dP3  3 ( ~3  ______ d/V-13 dPLDNA

dt K P3+P 3 /V K p32+P1 33+ A2/V dt dt

dM2 M=~ (~ dM1PL) -k *(15)

dt M dt dt S T4M m



-19-

FIGURE LEGENDS

Figure 1. B-lactamase activity from plasmid pBR322 as a function of

dilution rate in a continuous culture of E. coli B/r/pBR322.

Figure 2. Stability and O-lactamase activity of plasmid p17 in a con-

tinuous culture of E. coli B/r/pl7. Stability is defined as

fraction of plasmid-containing cells in the culture as de-

termined by ability to form macroscopic colonies on anpici-

lin containing plates. Solid line is the model prediction

of stability, whereU , denotes our experimental measure-

ment. TheS, denotes -lactamase activity where the dashed

line is the best line through the experimental points.

Dilution rate was 0.7 h - .

Figure 3. The same as Figure 2 except that the dilution rate is 0.27

h-1.
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TABLE I

EQUATIONS WHICH SIMULATE REPLICATION CONTROL OF THE ColEI PLASMIDS

d- RNAI = K PL -1-k 2 - RNAI - RNAII - k • RNAI (1)
dt TRNAI VC dRNAI

d RNAII K • PL - 2 I RNAI RNAII - k RNAII (2)
dt TRNAII VC dRNAII

Rom (B PL 4.0 x 10-  1) dMI (3)
dt M3 dt

where K k 2 , and k d represent the overall transcription rate, second

order rate constant, and the degradation rate of the indicated RNA

species, respectively. Also,

Rom/VC (11

Rom-+ K
VC Rom

where a is the enhancement in the binding between the RNA's species

caused by Rom protein, a' is the maximum enhancement in the binding

constant between the RNA's species in the presence of excess Rom

protein, and

k2 = k2'(+ )(5)

where k2 and k'2 represent the binding constar.t between the RNA's species

in the presence and absenceof the Rom protein. Thus the model pertains to

both plasmids that produce Rom and mutants that do not.
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TABLE 2

KATHEKATICAL DESCRIPTION OF THE CRITERIA FOR INITIATION

OF A ROUND OF REPLICATION AS DESCRIBED IN THE TEXT

1) The average time between successive binding of an RNA polymerase to

RNA II promoter is evaluated from the reciprocal of overall trans-

cription rate of RNA II (i.e. I/KTRNA 11).

2) The number of RNA II molecule which escape binding with an RNA I

molecule is calculated by the following equation:

-k 2 • RNAI

RNA II = RINA II "e VC
0

where Lt is the average time required for RNA polymerase to trans-

cribe RNA II through the origin of replication.

3) The number of plasmids at any time during the cell cycie is calcu-

lated from the number of RNA II transcripts initiated (i.e., the

first criteria), which escape binding with an RNA I (i.e. second

criteria), and hybridize with DNA template at the origin.

RNA t
k 2  • -- At

P, = PL • f • e VC + Pt't t-1 ti-I

where f is the frequency of binding of RNAZI transcript to the DNA

template at the origin resulting in a DNA-RNAlI hybrid which can be cleared

by RNaseH. PLt_ and PLt denote the number of plasmids before and after

the latest initiation of transcription from the RNAII promoters.
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TABLE 3

THE VALUES OF PARAMETERS

Parameter Value

kdRNA 21 h-I

k TRNA 163 Transcripts/hr promoter

k ,k' 8.8, 17.3 x 10- 24 ml

2 2 mo1ecu e-h

kd 2l1
k3RINA 11 21h

kT  10 Transcripts/hr promoter

TRNA I I

9.l-6M

k Rom 210 M

f 0.5

0.024

See reference 22
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TABLE 4

EFFECT OF GROWTH RATE ON THE

PLASMID pBR322 rom-DNA CONTENT

mg Plasmid DNA
Growth Rate g. bacteria

0.94 0.70

0.67 0.82

0.5 0.92

0.39 0.99

0.29 1.10
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TABLE 5

Relative Productivity of Plasmid-Encoded Protein Synthesis

as a Function of Growth Rate. Case for Plasmid pBR322 rom

and the Assumption of Plasmid Protein Synthesis as Constant

Fraction of Total Protein Synthesis

Plasmid Protein Plasmid Protein

Growth Rate Cell Productivity

h -1 (g protein i0'4) (g protein 105

cell ml-hr

0.94 0.159 Ol

0.80 0.127 0.270

0.67 0.102 0.215

0.50 0.082 0.145

0.38 0.081 0.116

*Assunes 1.0 g/L glucose in feed.
AZero productivity is obtained due to u Pax and operation at the

washout point.
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TABLE 7

The Effect of Growth Rate and the Level of Expression of the Plasmid

Genes on the Stability of a Continuous Culture of Recombinant E. Coli/

pBR322 rom

Glucose Conc. Growth Plasmid Encoded Proteins

(ppm) Rate Total Cell Protein at m*

1000 0.940 0.0 1 0

0.858 0.15 1.095 308s

0.762 0.31 1.232 132

0.707 0.48 1.328 95

3.27 0.396 0.0 1.1 )

0.350 0.15 1.130 228

0.313 0.31 1.265 116

0.286 0.48 1 .380 7

*number of generations required to reach a population with 10% plasmid

cont aining cells
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SUMMARY

Changes in plasmid copy number with growth have important implications

for productivity of plasmid gene products. Stationary phase cultures often

have higher plasmid copy numbers than growing cultures. Further, the use

of immobilized cell cultures is of increasing interest and celi growth

under these conditions is often very slow. Thus it is of interest to

predict the behavior of plasmid-containing cells under slow growth

conditions.

We have developed a single-cell model of E co/i which contains

significant detail on metabolic interactions. Extension to slow growth

(doubling times of 20h to 150h) is straightforward. Growth rate

predictions for glucose-limited cultures resemble that for the Monrod

equation with a maintenance term. Membrane energization is the dominant

maintenance energy cost. A minimum glucose concentration is necessary to

maintain growth ? 0. The value of this minimum depends on cell geometry.

Cell "death" (growth < 0) occurs when the cell cannot adjust its size

rapidly enough to satisfy the equation:

Rate Glucose Uptake-Surface Area Maintenance Energy for Cytoplasmic
Functions-Cell Volume + Maintenance Energy for Membrane
Energization-Surface Area

Thus cell death depends on initial conditions and the population model can

predict which portion of the oopulation will remain viable.

The base single cell model has been extended to include the ColEl type

plasmid replication mechanism. If the transcription rates for the RNAI and

RNAII are assumed independent of growth rate, then the predicted plasmid

copy number is relatively independent of growth rate even at low growth

rates. If the transcription rates for RNAI and RNAII change with growth
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rate in a manner directly proportional to the cellular protein synthesis

rate, then the copy number is several-fold higher in very slow growing

cells although relatively independent of growth rate for moderate growth

rates (P > 0.3h-1).

INTRODUCTION

The normal environment for enteric organisms such as Escherichiacoli is

one of "feast and famine". Over the eons the metabolic control systems for

E coli have been tuned to deal with severe environmental fluctuations. This

type of selective pressure is part of the reason that metabolic control

systems in E coli and in higher eucaryotic cells differ since higher

eucaryotic cells are in a relatively more constant environment.

Most fermentation specialists have focused on growth in nutrient rich

environments or the "feast" part of the cycle. Yet slow growth or "famine"

conditions may be technologically important. The most obvious is an

immobilized cell system where cell growth is often intentionally

suppressed. Immobilized cell systems offer numerous potential advantages

detailed elsewhere in this volume. The potential for cell containment and

for control of segregational losses of plasmids make slow growing

immobilized cell systems particularly attractive for genetically modified

bacteria.

The survival of genetically-modified cells accidentally released from

fermentation processes is of regulatory concern. Prediction of survival of

a cell population in a "natural" environment is useful in addressing such

concerns and certainly requires sound predictive models. In some cases it

has been proposed to use genetically-modified cells for the insitu treatment

of hazardous wastes (1) or in crop protection (2). Such intentional

release of cells raises not only regulatory concerns but questions of
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efficiency of the treatment. Again models may help to identify those con-

ditions in which the process would be effective without the engineered

organisms being displaced too soon by competing natural populations. In

all of these circumstances we might anticipate that the cells would be

subject to periods of nutrient deprivation.

The consideration of how a cell functions under conditions of nutrient

deprivation and slow growth raises intrinsically interesting questions

about which biochemical steps are rate influencing.

We have previously described a computer model for a single-cell of

Escherichiacoli (3-8). This model provides a detailed framework in which to

explore questions of slow growth and the effects of genetic modification.

Unlike many other models this model predicts cellular response (growth

rate, composition, size, shape, timing of chromosome replication, etc.) as

an explicit function of changes in substrate levels. Currently the model

responds to glucose or ammonium ion as limiting nutrients in a glucose-

salts minimal medium. Since glucose is both an energy and carbon source,

its use as a limiting nutrient provides opportunities for complex behavior.

The purpose of this paper is to describe extension of this model to

conditions of slow growth for both wild-type cells and plasmid-containing

cells under glucose limiting conditions.

SLOW GROWTH OF WILD-TYPE CELLS

In our previous work we considered growth rates above 0.15 hr-1. In

applying the model to low growth rates we discovered an error in the

earlier formulation (4). Our intention was to have the rate of amino acid

degradation be approximately 50% of the protein degradation rate (for which

experimental data existed). Inadvertently the rate constant for amino acid
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degradation was set at 50% of the rate constant for protein degradation.

However, to have the mass flux for amino acid degradation, the value for

the constant, kTp 1, needs to be set at 5.0 hr- 1 since both degradation

reactions are assumed to be first-order but the protein pool is much larger

than the amino acid pool. This change does not alter model response for

growth rates above 0.15 hr-' although it makes a substantial difference at

very low growth rates (below 0.05 hr- 1). For consistency the degradation

rate constant for ribonucleotides, kTp 2 , was recalculated to be 0.12 hr
-1

instead of 0.03 hr- 1. The change in kTp 2 has no effect on model response

at any growth rate. The saturation constant for energy dependent degrada-

tion of amino acids (KTP1) was altered from 11 mg/L to 30 mg/L of A2 (low

molecular organics derived from glucose) to reflect the observed change in

A2 concentration when the cell switched from carbon to energy limitation.

Once these corrections to the original model were made it was possible

to use the model to discern which step(s) under glucose limitation alter

growth response. Simulation results indicate that at growth rates above

0.15 hr- I the internal A2 concentration is relatively constant while below

0.15 hr-1 the A2 concentration decreases nearly linearly with growth rate

(see Figure 1). We interpret this result to indicate that the cell is

primarily limited for carbon above 0.15 hr-1 while at lower growth rates

the ability to convert A2 into energy becomes limiting.

One might suppose that if the uptake rate for glucose were increased

then the effects of glucose limitation could be sippressed. As shown in

Figure 2, simply changing the glucose uptake rate changes the quantitative

response of the cell to variations in glucose concentration but not the

qualitative response. In each case there is obvious deviation from Monod-

type depending on glucose concentration. Further, no matter what uptake
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rate is used in these calculations, there is an asymptotic approach to zero

growth rate at a finite glucose concentration. The curvature in these

plots are suggestive that more than one enzymatic reaction is growth rate

influencing (9). Although a similar curvature would be predicted by a

model with a diffusional step followed by an enzymatic step (9), diffusion

is not allowed in the single-cell model calculations. The concentrations

shown in Figure 2 are those that exist at the cell surface and if diffusion

is important, these values will be less than the bulk concentration of

substrate. Thus, at least two enzymatic-type steps must be controlling in

the model at low substrate concentrations.

Clearly the predicted behavior deviates from the Monod equation. We

screened several cellular processes to determine if they were responsible

for growth rate approaching zero at a relatively high residual glucose con-

centration. For example, it was found that altering the stringent response

(see 10) and the rate of RNA synthesis had no effect on the qualitative

nature of the cellular response at very low glucose concentrations although

it does at moderate glucose concentrations.

Another possibility is that non-growth associated rather than growth

associated phenomena are controlling at low glucose concentrations. As

shown in Figure 3, the prediction of a finite residual glucose concentra-

tion is simply a consequence of maintenance energy requirements, since

removal of these terms results in Monod-like behavior. The model contains

maintenance energy terms for precursor and macromo.ecule turnover, main-

tenance of membrane energization, and energy spilling reactions such as

ppGpp formation and degradation. Membrane energization, which is related

to cell surface area, is numerically much larger than the other maintenance

terms which are cell volume associated.
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An unstructured model where growth rate is described by a Monod-type

term plus a maintenance term will give the same qualitative dependence of

growth rate on glucose as our more complex single-cell model. Equations of

this form are often used for describing the performance of activated-sludge

systems, although the interpretation of parameters is more difficult in a

multiple species and substrate system.

The single-cell model predictions of growth rate dependency on glucose

are consistent with the observations of Daigger and Grady (11) that the RNA

limiting theory of growth is inadequate for describing bacterial growth at

both intermediate and very low growth rates. However, the prediction of a

significant residual glucose concentration was somewhat unexpected since

the experiments of Shebata and Marr (12) report the growth of some strains

of E. coli at glucose concentrations much less than the 0.5 mg/L predicted by

the model. However, the presence of a second substrate, such as might

arise from cell lysis, can lower apparent threshold concentrations for

substrates (13).

Schmidt, etal. (14) have developed a method to calculate a threshold

concentration of a substrate when simple diffusion to the cell is the

limiting step. The calculation of the threshold concentration varies

strongly with changes in maintenance energy requirements. We are currently

extending the approach o" Schmidt, etal (14) to a cell with a hemispherical

caps and a cylindrical body. However, based on a cell with a spherical

shape we believe that diffusion to the cell could play a significant role

(threshold concentrations 0.1 to I mg/L) for the high maintenance energy

values predicted for E. coli B/r at 37°C. These predicted values of

maintenance energy have been confirmed experimentally for moderate and

higher growth rates (6). However, it is quite possible that membrane
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energization costs vary with growth rate since the lipid content of the

cytoplasmic membrane changes with growth rate. Harder (in a personal

communication in reference 14) believes that maintenance energy may be

significantly lower for bacteria growing in nutrient poor environments (10x

to LOOx). Recently evidence to support decomposing the maintenance term

into a constant term and a growth-rate dependent term has been presented

(15). By changing membrane composition at lower growth rates the cell may

construct a membrane more or less resistant to proton leakage. Since

coupling a diffusion model to our cell model is relatively simple,

measurements of residual glucose concentrations at low growth rates should

provide a means to estimate the maximum allowable value of the maintenance

energy and its components.

Thus we compared the model predictions with chemostat experiments.

The results are shown in Figure 4 while the techniques used are described

at the end of this paper. This comparison is based on the assumption that

membrane energization is independent of growth rate and diffusion of

glucose to the cell surface is unimportant. Both the data and model

predict a finite glucose residual concentration of about 0.5 mg/L or

higher. Further, in batch experiments, even well out into the stationary

phase, we have measured glucose residuals of about 1.0 to 1.5 mg/L.

The deviations of model prediction from some of the data in Figure 4

is probably due to variations in the viability of the cultures. The

prediction derived from the single-cell model assumes 100% viability.

Experimental point A which agrees closely with the model has a population

of near 100% viability while at point B the population had a viability of

30%. Viability was not measured in the other chemostat experiments. If

the viability is less than 100%, dilution rate does not equal growth rate.
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(At a dilution rate of 0.05 hr-I with a population that is 30% viable the

growth rate of the viable fraction must be 0.17 hr-i).

Agreement of these data with the model cannot totally validate the

model. For example, we cannot exclude the possibility of cell lysis which

could release a variety of potential substrates. Under conditions of low

nutrient availability, E co/i no longer uses glucose preferentially (16).

Experiments with long residence times can be difficult to conduct due to

wall growth or genetic instability although we believe neither of these

were present in our case (see "Experimental" section).

In any case the experimental data do suggest multiple steady-states

where the viable portion maintains a similar growth rate and substrate con-

centration but the portion of the population viable changing with dilution

rate. Such multiple steady states can probably be predicted by the type of

modeling approach employed here.

Consider the following relationship:

S R S F +V Er  (1)

where S is the surface area of the cell* RA2 is the rate of glucose uptake

which is a function of the external concentration of glucose; EM is the

rate of metabolic energy expenditure per unit surface area required to

maintain membrane energization (or potential); V is the cell volume; and ET

is the rate of maintenance energy expenditure due to the turnover of cel-

lular constituents. If equation I is satisfied, than the cell can remain

viable. Equation I can be expressed as:

(R A2-E)LET(V/S) (2)

Thus elongated cells with a high S/V ratio are more likely to satisfy equa-

tion 2 than short cells. The single-cell model predicts a sharply

increasing S/V ratio at low glucose concentrations for cells in a steady-

. . . .. . .A



-9-

state situation. Consider, however, the transient situation. A cell

growing in a rich medium will have a relatively small S/V ratio. If it is

switched to a low glucose concentration, can it change its shape

sufficiently rapidly to satisfy equation 2? If we had a population of

cells distributed over a wide variety of cell sizes and S/V ratios, we

could anticipate that some cells could adjust to a large shift of glucose

concentrations while others would not. Thus the apparent steady-state

obtained after four or five residence times would be a function of the

initial size distribution of the population. Work is currently underway to

confirm this possibility.

The model is numerically stable even at very low glucose

concentrations. At a glucose surface concentration of 0.55 mg/L the model

predicts a doubling time of 140 hr while at 0.50 mg/L cell death is

predicted since the internal glucose concentration is negative.

These results are with wild-type cells. When cells are actively

expressing plasmid encoded genes for non-essential proteins one would

expect even greater sensitivity to low glucose concentrations since the

plasmid-encoded functions can be like an extra maintenance energy term.

EFFECTS OF SLOW GROWTH ON PLASMID-CONTAINING CELLS

We recently have reported the extension of the single-cell model to

incorporate a mechanistic model for the replication of plasmids with the

ColEl origin of replication (17,18). Such plasmids are commonly used as

laboratory or industrial vectors with pBR322 and its derivatives being

examples.

The mechanism for ColEl replication has been well explored by Tomizawa

and colleagues (19,20). The plasmid encodes information for two species of

-A mmmmm~
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RNA. RNAIL, whose transcription is initiated 555 base pairs upstream from

the origin of replication, can combine with the origin of replication on

the plasmid. The RNA-DNA complex serves as the substrate for RNaseH which

cleaves the hybridized preprimer RNA to produce the RNA primer necessary to

initiate replication. RNAI is a shorter transcript (about 110 base pairs

long) transcribed in the opposite direction from RNAII, but on an over-

lapping section of the plasmid. RNAI acts as an inhibitor of replication.

RNAI binds to RNAII and prevents the formation of the stable RNA-DNA

complex which is a prerequisite for the formation of primer RNA. The

binding between RNAI and RNAII is a second-order reaction; a plasmid

encoded protein, Rom, can increase the binding rate.

The model incorporates this mechanism and can make reasonable

estimates of plasmid copy-number for a variety of mutations to genes for

RNAI or RNAII which alter their binding rates and consequently the degree

of inhibition (17). The equations are described elsewhere in detail (17).

Briefly the model requires all plasmids to initiate rounds of RNAII

transcription at the same time. The transcription rate for RNAII

determines the time interval between application of the equation used to

calcualte the number of new plasmids formed a pre-existing set.

In this equation the intracellular concentration of RNAI will strongly

alter plasmid copy number by altering the probability that an RNALI

transcription event will result in initiation of replication. The

concentration of the Rom protein alters the value of the binding rate

constant and thus influences copy number but not as strongly as RNAI.

Using the model we have found that if the RNAI transcription rate is

less than that for RNAII that runaway replication will occur. Clearly

specific inducible promoters coupled to the regions encoding for RNAI or



RNAII could be used to manipulate plasmid copy number and changes in copy

number rather precisely.

The mechanistic model for ColEl replication was tested for predictions

of copy number for various mutations in RNAI and RNAII in the presence or

absence of the Rom protein and for conditions of moderate nutrient limita-

tion. In extending the model to conditions of lower growth rates to

determine the effect of growth rate on copy number it is necessary to

consider the effects of growth rate on the transcription of RNAI and RNAII.

Two possibilities have been considered by us. First is that the transcrip-

tion rate of RNA[ and RNAII are not changed by growth rate. The second is

that both transcription rates vary as the overall transcription rate of the

cell varies.

The implications of these two assumptions are shown in Figures 5 and

6. The difference in predicted copy number between these two assumptions

is insignificant for growth rates above about 0.30 hr-1. However, the

assumption of growth dependent transcription rates leads to a rapid

increase in copy number at very low growth rates. If the transcription

rate is assumed independfnt of qrowth rate, the copy number would change

very little with growth ratt'.

lhe growth dependent trdnsc(ription rate certainly seems intuitively

reasonable. [he prediction of increased plasmid copy number under nutrient

starvation is consistent with a number of published reports. Steuber and

Bujard (21) report a several fold increase in copy number as cells enter

the stationary phase. However, interpretation of their results are

complicated by the use of spectinomycin to alter growth rate.

Siegel and Ryu (22) have reported on the effects of nutrient limita-

tion on copy number and plasmid content of a plasmid, pPLc23-trpA., in E
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coliM72. This plasmid has the ColEl origin of replication. In the above

system the plasmid content (mgDNA/g.bacteria) increased 8.0 fold when the

growth rate was decreased from p = 1.12hr-I to 0.06 hr.-l The model

predicts a 8.2 fold increase in plasmid content going from p z 0.09 hr- I

to 0.93 hr-1. The plasmid content predicted by the model is higher than

measured by Siegel and Ryu (ca. 0.3 mg/g versus 0.5 mg/g at = 0.9 hr-I)but

this difference reflects differences in plasmid, host cell size, and

maximum growth rates. Siegel and Ryu measured 32 plasmids per cell at p =

.1? hr- 1and 74 at u = 0.06 hr-1. The model predicts copy number changing

frcm 20 at U 0.93 hr-1 to 64 at p = 0.09 hr- I. E coli B/r's maximum

growth rate in minirmmal medium is 0.93 hr-i which is slower than E coli

72's maximum growth rate. Thus the model predictions assuming variable

transcription rates for RNAI and RNAII give the same relative increase in

copy number with decreasing growth rate.

Clearly if the promoter for RNAI was effected differently from that

for RNAII as a function of intracellular composition (i.e. growth rate)

then copy number dependence on growth rate would be altered from that

predicted here.

Once copy number is known it is possible to predict the depression of

growth rate due to expression of plasmid-encoded protein synthesis. If

copy number and the growth rate depression due to plasmid-encoded protein

synthesis is known, then a simple formula derived by Seo and Bailey (23)

can be applied to predict the stability of the culture. We have done so

with this model for moderate growth rates (p = 0.3 hr-1 and 0.7 hr-1 ) and

have been able to predict the number of generations before 10% of the

population contains plasmids within 35% when compared to our experimental
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data (18). At the lower growth rate fewer generations are required before

instability is observed.

We believe that this type of analysis will aid in designing reactors

with cyclic or other dynamic operating patterns. In particular, an

increase of copy number at low growth rates suggests the possibility of

improving plasmid-encoded protein production by cycling the culture through

a "feast-famine" cycle. Further, by extending the model to lower growth

rates we expect to have a basis for the design and rational understanding

of immobilized cell systems using genetically-engineered E.coli.
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APPENDIX

Experimental Methods

Organism

E. coli B/r-A (ATCC 12407) was obtained from the American Type Culture

Collection, Rockville, Maryland and used in all experiments.

Medium

A modified "C" medium was used for chemostat experiments, batch

experiments, and culture maintenance. The medium contained 3.00g K2HP04,

1.50g KH2PO4, 1.25g (NH4)2S04, O.10g MgSO4-7H20, O.01g NaCl, 0.O01g

FeSO4-7H20, 0.0372g Na2EDTA'7H20, O.lg CaCl2, O.01g MnS04, 1.Og glucose and

one liter of distilled water. The pH was 7.0 ± 0.1. All chemicals were

reagent grade. The medium was sterilized in three parts, CaCl2 and MnS04,

glucose, and the remaining salts to prevent carmelization of the glucose

and precipitation of calcium salts.

Glucose Assay

Glucose concentration was measured enzymatically using the glucose

S.V.R. kit (Calbiochem, LaJolla, Ca.). The kit directions state to dilute

the enzyme with 15.0 ml of distilled water and then use 3.0 ml of enzyme

solution and 0.02 ml of sample. To measure very low concentrations of

glucose (down to 0.5 ± 0.2 mg/L) the directions were modified as follows.

The enzyme was diluted with 5.0 ml of distilled water. 1.0 ml of the

enzyme solution was then added to 3.0 ml of sample. The absorbance was

measured at 340 nm. For low glucose concentrations the calibration is

linear and of the form:

AA[glucosel - mg1L
0.0345
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where AA is the difference in absorbance between the prepared sample and a

blank containing 1.0 ml of enzyme solution and 3.0 ml of distilled water.

The presence of media salts did not effect the calibration.

The medium sample was prepared by withdrawing about 5.0 ml from the

growth chamber and rapidly filtering through a 0.45 vm Millipore filter

attached to a syringe.

Cell Concentration

Cell concentration was monitored by measuring the absorbance of the

cell suspension at 600 nm.

Cell Viability

The percent viable cells was determined by measuring the optical

density of a sample and then plating 10-5 to 10-7 dilutions and counting

colonies. This was compared to colonies/ml measured at the same optical

density for cells growing in exponential phase.

Continuous Culture

The chemostats used were Bioflow Model C30 (New Brunswick, Edison,

N.J.) with working volumes ranging from 320 ml to 360 ml. A peristallic

pump (Econo-Column pump by BioRad, Richmond, Ca.) feed system using silicon

tubing was employed. The feed rate could be modified to give dilution

rates ranging from 0.025 hr-I to 0.15 hr-1. The system was mixed with a

small impeller and sparged with sterile, humidified air. Air was supplied

using a diaphram pump (Optima by Hagen, Mansfield, Mass.) and passing the

air through a packed column filled with water maintained at 37°C. Air was

filtered using a Millipore cartridge filter. The chemostat was maintained

at 37±0.50C. No pH control was used. The steady state pH in all

experiments was 6.7 ± 0.05.
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Nominal residence times were determined by measuring the working

volume of the reactor at the appropriate air supply and stirring rates and

dividing by the flow rate determined by measuring the time required to pump

out a 10 ml pipet. Several residence time distribution studies were

performed using red food coloring as a tracer for residence times ranging

from 8 hr to 40 hr under conditions similar to actual chemostat operation.

This showed that the nominal residence time was within five percent of the

actual residence time measured.

The medium was steam sterilized in 10 liter glass jars for 40 minutes

as described earlier. The chemostat was inoculated with about 10 ml of a

12 hr shake flask culture of E coli. Batch growth was followed to insure a

maximum growth rate of at least 0.9 hr-1. After an optical density of 1.0

was reached the reactor was set for continuous flow.

Steady state was determined by monitoring the glucose concentration

and the cell density within the chemostat. Steady state was assumed if at

least six residence times had lapsed and cell density and glucose

concentration remained constant or two consecutive residence times.



-19-

FIGURE LEGENDS

1. The model predicts a nearly linear decrease in internal concentration

of low molecular organics ("glucose") at low growth rates (below 0.15

hr-1) while this internal concentration is relatively independent of

growth rate for moderate growth rates (0.15 hr-1 to 0.9 hr-1).

2. Altering the maximum rate of glucose uptake does not alter the

qualitative nature of the predicted growth response to changes in

substrate concentration. The dash/dotted, dashed, solid and dotted

lines represent the response if the maximum rate of glucose uptake is

set at 50%, 75%, 100% and 125% of its normal value (ref. 4),

respectively.

3. By removing the maintenance energy terms the model predicts Monod-like

dependence of growth rate on substrate. The dashed line represents

the prediction from the complete model. The solid line is the model

prediction when maintenance terms are removed. The dotted line

represents the Monod equation with Ks equal to 4 mg/L.

4. The predicted and measured dependence of residual glucose

concentration on dilution rate is shown. Dilution rate equals growth

rate if and only if all cells are viable. The solid line represents

predictions of the model. For measurement A culture viability was

100% while at measurement B only 30% of the cells were viable.
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5. The plasmid copy number is shown as a function of growth rate for a

derivative of a ColEl type plasmid in Ecoli B/r. The binding constant

between RNA I and RNA II for this plasmid was 9.2 x 10-13 in the

presence of the ROM protein. The solid line represents the case where

RNA I and RNA II transcription rates vary with growth rate in a manner

proportional to the changes in average transcription rate in the cell.

The dashed line represents model predictions if RNA I and RNA II

transcription rates are independent of growth rate and set at the

observed values obtained under conditions of exponential growth in

hatch culture.

6. The prediction of plasmid content on growth rate for the same

conditions as described in Figure 5.
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